Hi, I am trying to use DESeq2 but I having troubles determining the reduced formula for the nbinomLRT. I will like to compare the results with the DEGs I got by nbinomGLMTest using DESeq. With DESeq I did the following: co=read.table("C_LPS_PBS_1h_DS.txt",header=T) ind=c(1,2,4,5,1,3,4,5) trt=c(rep("A",4),rep("E",4)) a.con=cbind(ind,trt) adat=newCountDataSet(co,a.con) adat=estimateSizeFactors(adat) adat=estimateDispersions(adat,method="blind") vst=varianceStabilizingTransformation(adat) adat=estimateDispersions(adat,method="pooled-CR", modelFormula=count~ind+trt) a.vsd=getVarianceStabilizedData(adat) fit0=suppressWarnings(fitNbinomGLMs(adat, count ~ 1)) fit1=suppressWarnings(fitNbinomGLMs(adat, count ~ ind)) fit1a=suppressWarnings(fitNbinomGLMs(adat, count ~ trt)) pvals.g=nbinomGLMTest(fit1,fit0) pvals.t=nbinomGLMTest(fit1a,fit0) table(pvals.t<0.01) table(pvals.g<0.01) And started with DESeq2: co=read.table("C_LPS_PBS_1h_DS.txt",header=T) ind=c(1,2,4,5,1,3,4,5) trt=c(rep("A",4),rep("E",4)) a.con=cbind(ind,trt) a.con2 <- colnames (co) a.con2 <- colnames (co) rownames(a.con) <- c("A1","A2","A4","A5","E1","E3","E4","E5") a.con2 <- data.frame (a.con) ddsFull <- DESeqDataSetFromMatrix(co, a.con2, design = ~ ind + trt ) design(ddsFull) <- formula(~ ind + trt) dds <- estimateSizeFactors(dds) dds <- estimateDispersions(dds) a.vsd=getVarianceStabilizedData(dds) After this I am confused because I don't know how to write the reduced formula that will allow me to compare the null model ~1 with the trt. Thanks [[alternative HTML version deleted]]