Dear list, I'm using MuMIn for model averaging and I had a question about the z-test that MuMIn performs when using the summary call. e.g.: > model.1 <- subset(model.sel(model.1.glmm.list, rank = AICc), delta<3) > summary(model.avg(model.1)) > > ... > > Model-averaged coefficients: > Estimate Std. Error Adjusted SE z value Pr(>|z|) > 0|1 0.094832 0.358649 0.360952 0.263 0.792760 > 1|2 1.193099 0.366761 0.369124 3.232 0.001228 ** > age 1.163131 0.416735 0.419355 2.774 0.005544 ** > distribution 0.063250 0.321025 0.323071 0.196 0.844784 > left 0.158854 0.247816 0.249294 0.637 0.523985 > right -1.317514 0.328174 0.330271 3.989 6.63e-05 *** > income 0.705691 0.190689 0.191843 3.678 0.000235 *** > population -1.026989 0.319914 0.321969 3.190 0.001424 ** > weight -0.178042 0.135962 0.136761 1.302 0.192967 > > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 What exactly is the z-test testing? I read a post saying that p<0.05 means the confidence intervals don't span zero, however you can get the confidence intervals using the confint() call. What is the z-test telling me that the confidence intervals are not? Also - the MuMIn vignette says that the p-value assumes a normal error distribution. A normal distribution of what? The models used in model averaging? Or the original data? Any clarification would be much appreciated. Tom [[alternative HTML version deleted]]