dear all, I have a dataset composed by different classes: I have two main classes, "active (Act.)" and "latent (Lat.)", furher subdivided in the gene subclasses "IP10" and "MIG" and then into 7 stimulus sub-subclasses "ESAT6" to "PHA". Would it be possible to test in a direct way the statistical differences between the response variable ("ratio") of the classes active and latent values for each of the sub-subclasses and stratified by the subclass gene? that is: how can i find differences for, let's say, the ESAT6 ratios between active and latent for the gene IP10, then for the ESAT6 active versus latent for the MIG gene; then reiterate for the CFP10 for IP10, CFP10 for MIG and so on and so forth. the data looks like: TB gene stimulus ratio Act. IP10 ESAT6 0.752020287 Act. IP10 CFP10 0.893628674 Act. IP10 Rv3615c 0.958108603 Act. IP10 Rv2654 0.319492309 Act. IP10 Rv3879 0.074381059 Act. IP10 Rv3873 0.874629325 Act. IP10 PHA 0.308093623 Act. MIG ESAT6 0.398817499 Act. MIG CFP10 0.022455057 Act. MIG Rv3615c 0.186013561 Act. MIG Rv2654 0.040591894 Act. MIG Rv3879 0.716143409 Act. MIG Rv3873 0.271241311 Act. MIG PHA 0.154207839 Lat. IP10 ESAT6 0.579278956 Lat. IP10 CFP10 0.553393777 Lat. IP10 Rv3615c 0.918602425 Lat. IP10 Rv2654 0.56821826 Lat. IP10 Rv3879 0.429991707 Lat. IP10 Rv3873 0.938468864 Lat. IP10 PHA 0.621095162 Lat. MIG ESAT6 0.486344894 Lat. MIG CFP10 0.288455361 Lat. MIG Rv3615c 0.602348528 Lat. MIG Rv2654 0.717395188 Lat. MIG Rv3879 0.178745118 Lat. MIG Rv3873 0.330885875 Lat. MIG PHA 0.327117342 Many thanks for any possible help. Best regards, Luigi [[alternative HTML version deleted]]