Here's one way to do it ...
# create example data frame
y <- rnorm(30)
gene_subset <- data.frame(y, x1=rnorm(30), x2=rnorm(30), x3=100*y+rnorm(30))
# fit a full linear model
fit <- lm(y ~ ., df)
# reduce the model
reduced_model <- stepAIC(fit, trace=FALSE)
# NON-omitted variables (excluding the response)
keepx <- names(reduced_model$model)[-1]
index <- match(keepx, names(gene_subset))
Jean
On Mon, Aug 26, 2013 at 12:51 AM, Sachinthaka Abeywardana <
sachin.abeywardana@gmail.com> wrote:
> I am regressing a gene on another gene subset. Then I use stepAIC to reduce
> the number of explanatory genes. How do I get the index of the NON-omitted
> variables, so that I could analyse them?
>
> gene_subset=c(y=genes[,i], genes[,other_genes]);
> reduced_model=stepAIC(y~.,data=gene_subset,trace=false);
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]