Dear useR, I don't understand the results of the predict.bam function of mgcv package when constucting a varying-coefficient model with bam instead of gam: library("mgcv") dat <- gamSim(4) b <- gam(y ~ fac+s(x2,by=fac)+s(x0), data=dat) predict(b, dat[1,], type = "terms") with gam everything is fine: only s(x2):fac1 is different of zero but using bam: b1 <- bam(y ~ fac+s(x2,by=fac, bs = "cc")+s(x0),data=dat) predict(b1, dat[1,], type = "terms") all terms s(x2):fac1, s(x2):fac2 and s(x2):fac3 are differnt of zero. Thanks for your help Florian -- View this message in context: http://r.789695.n4.nabble.com/mgcv-predict-bam-strange-results-tp4673364.html Sent from the R help mailing list archive at Nabble.com.