Hello I have done a cluster analysis, and I would like to change the font size of my sample names. I have tried using cex, but this doesn't work/change anything. I have tried to specify it with cex.main, cex.lab, cex.axis and cex.sub, and can change all other names in the picture but my sample names. I can't see what I am doing wrong. I hope somebody can help me, and I apologize for this probably very simple question/mistake. I have around 1000 rows and 50 columns, but have only included a few in my example. Thank you in advance! Kind regards Gitte Andersen #Read in data data<-read.table("/Users/gban/Desktop/Heatmap/Heatmap with selected genes/Probes_for_heatmap_35_meth_diff_both_hypo_and_hypermeth_Gene&probenames.txt",sep="\t",dec=",",header=TRUE,row.names=1) data OS_Tumor1_08_14985_2_3 OS_Tumor2_08_226869_1 CHST3_cg04268405_1 0.95038060 0.76433753 DLX5_cg19962750_2 0.93111825 0.75384523 ZIC4_cg12892506_3 0.86033747 0.69614933 DLX5_cg05597836_4 0.90698171 0.66414891 #Turn the data into a matrix, and transpose to get the columns to be clustered Data_matrix<-as.matrix(t(data)) Data_matrix CHST3_cg04268405_1 DLX5_cg19962750_2 OS_Tumor1_08_14985_2_3 0.9503806 0.9311183 OS_Tumor2_08_226869_1 0.7643375 0.7538452 OS_Tumor3_10_201917_2_3 0.7109182 0.7778035 OS_Tumor4_00_2395 0.7772400 0.6769241 OS_Tumor5_02_2669 0.9638739 0.9023436 OS_Tumor6_02_4738 0.9028490 0.9586764 OS_Tumor7_02_4850 0.8786524 0.8872261 OS_Tumor8_02_6935 0.8434550 0.7180251 OS_Tumor9_03_1430 0.7494400 0.9190213 OS_Tumor10_03_1701 0.9148253 0.7692125 OS_Tumor11_03_220 0.9270112 0.8607459 OS_Tumor12_03_2558 0.9344832 0.5013390 OS_Tumor13_03_373 0.9549153 0.9559071 OS_Tumor14_03_82 0.9117558 0.3993953 OS_Tumor15_06_22319 0.9580999 0.9645215 OS_Tumor16_07_16581 0.6213243 0.9033265 OS_Tumor17_07_28523 0.9064597 0.4421651 OS_Tumor18_07_3212 0.6439032 0.4344106 OS_Tumor19_07_6990 0.9350585 0.9238712 OS_Tumor20_07_6990sample2 0.9526839 0.9027684 OS_Tumor21_07_7724 0.9338156 0.8335415 OS_Tumor22_08_10238 0.9028336 0.8529122 OS_Tumor23_08_14985Sample2 0.9609952 0.9478541 OS_Tumor24_08_16592 0.9168102 0.9138002 OS_Tumor25_08_21197 0.9148711 0.9109843 OS_Tumor26_08_21197Sample2 0.9583610 0.8830407 OS_Tumor27_08_222863 0.9478853 0.8395278 OS_Tumor28_08_225814 0.9451414 0.9407933 OS_Tumor29_08_226869Sample2 0.9028336 0.8337000 OS_Tumor30_08_230660 0.9599117 0.9363075 OS_Tumor31_08_4485 0.8247909 0.8336728 OS_Tumor32_09_214654 0.9531564 0.8957473 OS_Tumor33_09_214654Sample2 0.9552210 0.9034464 OS_Tumor34_10_200150 0.9332627 0.8551589 OS_Tumor35_10_201917 0.9397219 0.9470733 OS_Tumor36_10_201917Sample2 0.9607446 0.9523402 OS_Tumor37_10_202221 0.9264254 0.9413189 OS_Tumor38_10_204294 0.8388658 0.8956207 OS_Tumor39_10_204294Sample2 0.8071109 0.8474199 OS_Tumor40_10_205933 0.8788835 0.4950936 OS_Tumor41_10_225662 0.9334545 0.8910134 OS_Tumor42_10_229129 0.5872184 0.8394597 OS_Tumor43_11_236261 0.9015548 0.9293858 OS_Tumor44_12_211561 0.6793692 0.1856015 Normalbone.3. 0.1636323 0.1222070 Normalbone.UA. 0.1934500 0.1303734 Normalbone.UA2. 0.1737224 0.1604758 CRL_11372 0.9779593 0.2533844 CRL_1427 0.9598825 0.8862426 CRL_1543 0.9283976 0.7198934 CRL_2098 0.9325895 0.6360936 Ho_f.4610 0.9370865 0.6279557 HTB_85 0.9441092 0.1037401 HTB_96 0.9511175 0.9160013 ZIC4_cg12892506_3 DLX5_cg05597836_4 OS_Tumor1_08_14985_2_3 0.86033747 0.90698171 OS_Tumor2_08_226869_1 0.69614933 0.66414891 OS_Tumor3_10_201917_2_3 0.58728927 0.65086446 OS_Tumor4_00_2395 0.41747130 0.45464648 OS_Tumor5_02_2669 0.74259213 0.88244165 OS_Tumor6_02_4738 0.79690018 0.93691928 OS_Tumor7_02_4850 0.05513471 0.91753824 OS_Tumor8_02_6935 0.70742299 0.77802530 OS_Tumor9_03_1430 0.84563086 0.87202952 OS_Tumor10_03_1701 0.81318017 0.72446802 OS_Tumor11_03_220 0.72489087 0.80580733 OS_Tumor12_03_2558 0.06656780 0.14739011 OS_Tumor13_03_373 0.94011867 0.95742989 OS_Tumor14_03_82 0.52129769 0.54734874 OS_Tumor15_06_22319 0.93025191 0.94392535 OS_Tumor16_07_16581 0.67236887 0.88546907 OS_Tumor17_07_28523 0.25764851 0.45550666 OS_Tumor18_07_3212 0.33624514 0.18623351 OS_Tumor19_07_6990 0.82904776 0.88946081 OS_Tumor20_07_6990sample2 0.76836030 0.82519665 OS_Tumor21_07_7724 0.90314315 0.71810973 OS_Tumor22_08_10238 0.83715782 0.86426252 OS_Tumor23_08_14985Sample2 0.82588214 0.90655043 OS_Tumor24_08_16592 0.77582828 0.83500490 OS_Tumor25_08_21197 0.90274785 0.96119490 OS_Tumor26_08_21197Sample2 0.87385578 0.83341529 OS_Tumor27_08_222863 0.72588195 0.59849569 OS_Tumor28_08_225814 0.87931232 0.89657489 OS_Tumor29_08_226869Sample2 0.86379063 0.88825605 OS_Tumor30_08_230660 0.92495563 0.95137547 OS_Tumor31_08_4485 0.84465179 0.66948504 OS_Tumor32_09_214654 0.92036441 0.71915709 OS_Tumor33_09_214654Sample2 0.93955431 0.46490552 OS_Tumor34_10_200150 0.80337813 0.82519665 OS_Tumor35_10_201917 0.87734686 0.91265824 OS_Tumor36_10_201917Sample2 0.93627004 0.94319232 OS_Tumor37_10_202221 0.93107776 0.96075927 OS_Tumor38_10_204294 0.85892154 0.94595920 OS_Tumor39_10_204294Sample2 0.69839075 0.76396555 OS_Tumor40_10_205933 0.25850129 0.43418918 OS_Tumor41_10_225662 0.71442683 0.88154146 OS_Tumor42_10_229129 0.42328977 0.77763541 OS_Tumor43_11_236261 0.82946721 0.87242385 OS_Tumor44_12_211561 0.84785994 0.12366988 Normalbone.3. 0.06840225 0.08229536 Normalbone.UA. 0.07383344 0.12502117 Normalbone.UA2. 0.07741817 0.09563505 CRL_11372 0.05409689 0.13815797 CRL_1427 0.91730069 0.92421230 CRL_1543 0.77789918 0.94650563 CRL_2098 0.91524115 0.50725942 Ho_f.4610 0.05736418 0.51843963 HTB_85 0.95464468 0.05260867 HTB_96 0.88410529 0.92872206 #Calculate the distance Data_dist<-dist(Data_matrix) #Make the cluster Data_clust<-hclust(Data_dist,method="ward") #Save the plot as a pdf file pdf(file="Cluster_Probes_From_genes_morethan_2_probes_and_morethan_30_methdiff.pdf") #Plot the cluster plot(Data_clust, cex=0.5) dev.off() #Ends the pdf saving. Gitte Brinch Andersen Kandidat-Ph.d. studerende Biomedicinsk Institut Wilhelm Meyers Allé 4 Aarhus Universitet DK-8000 Aarhus C Mobil: +45 30433317 E-mail: gitteba@hum-gen.au.dk<mailto:gitteba@hum-gen.au.dk> [[alternative HTML version deleted]]
Your example is not reproducible (see the posting guide), but using example(hclust) hc <- hclust(dist(USArrests), "ave") plot(hc) plot(hc, cex = 0.3) the second has much smaller case names. On 27/06/2013 11:12, Gitte Brinch Andersen wrote:> Hello > > I have done a cluster analysis, and I would like to change the font size of my sample names. I have tried using cex, but this doesn't work/change anything. I have tried to specify it with cex.main, cex.lab, cex.axis and cex.sub, and can change all other names in the picture but my sample names. > I can't see what I am doing wrong. > > I hope somebody can help me, and I apologize for this probably very simple question/mistake. > > I have around 1000 rows and 50 columns, but have only included a few in my example. > > Thank you in advance! > > Kind regards > > Gitte Andersen > > > #Read in data > data<-read.table("/Users/gban/Desktop/Heatmap/Heatmap with selected genes/Probes_for_heatmap_35_meth_diff_both_hypo_and_hypermeth_Gene&probenames.txt",sep="\t",dec=",",header=TRUE,row.names=1) > > data > OS_Tumor1_08_14985_2_3 OS_Tumor2_08_226869_1 > CHST3_cg04268405_1 0.95038060 0.76433753 > DLX5_cg19962750_2 0.93111825 0.75384523 > ZIC4_cg12892506_3 0.86033747 0.69614933 > DLX5_cg05597836_4 0.90698171 0.66414891 > > > > #Turn the data into a matrix, and transpose to get the columns to be clustered > Data_matrix<-as.matrix(t(data)) > > Data_matrix > CHST3_cg04268405_1 DLX5_cg19962750_2 > OS_Tumor1_08_14985_2_3 0.9503806 0.9311183 > OS_Tumor2_08_226869_1 0.7643375 0.7538452 > OS_Tumor3_10_201917_2_3 0.7109182 0.7778035 > OS_Tumor4_00_2395 0.7772400 0.6769241 > OS_Tumor5_02_2669 0.9638739 0.9023436 > OS_Tumor6_02_4738 0.9028490 0.9586764 > OS_Tumor7_02_4850 0.8786524 0.8872261 > OS_Tumor8_02_6935 0.8434550 0.7180251 > OS_Tumor9_03_1430 0.7494400 0.9190213 > OS_Tumor10_03_1701 0.9148253 0.7692125 > OS_Tumor11_03_220 0.9270112 0.8607459 > OS_Tumor12_03_2558 0.9344832 0.5013390 > OS_Tumor13_03_373 0.9549153 0.9559071 > OS_Tumor14_03_82 0.9117558 0.3993953 > OS_Tumor15_06_22319 0.9580999 0.9645215 > OS_Tumor16_07_16581 0.6213243 0.9033265 > OS_Tumor17_07_28523 0.9064597 0.4421651 > OS_Tumor18_07_3212 0.6439032 0.4344106 > OS_Tumor19_07_6990 0.9350585 0.9238712 > OS_Tumor20_07_6990sample2 0.9526839 0.9027684 > OS_Tumor21_07_7724 0.9338156 0.8335415 > OS_Tumor22_08_10238 0.9028336 0.8529122 > OS_Tumor23_08_14985Sample2 0.9609952 0.9478541 > OS_Tumor24_08_16592 0.9168102 0.9138002 > OS_Tumor25_08_21197 0.9148711 0.9109843 > OS_Tumor26_08_21197Sample2 0.9583610 0.8830407 > OS_Tumor27_08_222863 0.9478853 0.8395278 > OS_Tumor28_08_225814 0.9451414 0.9407933 > OS_Tumor29_08_226869Sample2 0.9028336 0.8337000 > OS_Tumor30_08_230660 0.9599117 0.9363075 > OS_Tumor31_08_4485 0.8247909 0.8336728 > OS_Tumor32_09_214654 0.9531564 0.8957473 > OS_Tumor33_09_214654Sample2 0.9552210 0.9034464 > OS_Tumor34_10_200150 0.9332627 0.8551589 > OS_Tumor35_10_201917 0.9397219 0.9470733 > OS_Tumor36_10_201917Sample2 0.9607446 0.9523402 > OS_Tumor37_10_202221 0.9264254 0.9413189 > OS_Tumor38_10_204294 0.8388658 0.8956207 > OS_Tumor39_10_204294Sample2 0.8071109 0.8474199 > OS_Tumor40_10_205933 0.8788835 0.4950936 > OS_Tumor41_10_225662 0.9334545 0.8910134 > OS_Tumor42_10_229129 0.5872184 0.8394597 > OS_Tumor43_11_236261 0.9015548 0.9293858 > OS_Tumor44_12_211561 0.6793692 0.1856015 > Normalbone.3. 0.1636323 0.1222070 > Normalbone.UA. 0.1934500 0.1303734 > Normalbone.UA2. 0.1737224 0.1604758 > CRL_11372 0.9779593 0.2533844 > CRL_1427 0.9598825 0.8862426 > CRL_1543 0.9283976 0.7198934 > CRL_2098 0.9325895 0.6360936 > Ho_f.4610 0.9370865 0.6279557 > HTB_85 0.9441092 0.1037401 > HTB_96 0.9511175 0.9160013 > ZIC4_cg12892506_3 DLX5_cg05597836_4 > OS_Tumor1_08_14985_2_3 0.86033747 0.90698171 > OS_Tumor2_08_226869_1 0.69614933 0.66414891 > OS_Tumor3_10_201917_2_3 0.58728927 0.65086446 > OS_Tumor4_00_2395 0.41747130 0.45464648 > OS_Tumor5_02_2669 0.74259213 0.88244165 > OS_Tumor6_02_4738 0.79690018 0.93691928 > OS_Tumor7_02_4850 0.05513471 0.91753824 > OS_Tumor8_02_6935 0.70742299 0.77802530 > OS_Tumor9_03_1430 0.84563086 0.87202952 > OS_Tumor10_03_1701 0.81318017 0.72446802 > OS_Tumor11_03_220 0.72489087 0.80580733 > OS_Tumor12_03_2558 0.06656780 0.14739011 > OS_Tumor13_03_373 0.94011867 0.95742989 > OS_Tumor14_03_82 0.52129769 0.54734874 > OS_Tumor15_06_22319 0.93025191 0.94392535 > OS_Tumor16_07_16581 0.67236887 0.88546907 > OS_Tumor17_07_28523 0.25764851 0.45550666 > OS_Tumor18_07_3212 0.33624514 0.18623351 > OS_Tumor19_07_6990 0.82904776 0.88946081 > OS_Tumor20_07_6990sample2 0.76836030 0.82519665 > OS_Tumor21_07_7724 0.90314315 0.71810973 > OS_Tumor22_08_10238 0.83715782 0.86426252 > OS_Tumor23_08_14985Sample2 0.82588214 0.90655043 > OS_Tumor24_08_16592 0.77582828 0.83500490 > OS_Tumor25_08_21197 0.90274785 0.96119490 > OS_Tumor26_08_21197Sample2 0.87385578 0.83341529 > OS_Tumor27_08_222863 0.72588195 0.59849569 > OS_Tumor28_08_225814 0.87931232 0.89657489 > OS_Tumor29_08_226869Sample2 0.86379063 0.88825605 > OS_Tumor30_08_230660 0.92495563 0.95137547 > OS_Tumor31_08_4485 0.84465179 0.66948504 > OS_Tumor32_09_214654 0.92036441 0.71915709 > OS_Tumor33_09_214654Sample2 0.93955431 0.46490552 > OS_Tumor34_10_200150 0.80337813 0.82519665 > OS_Tumor35_10_201917 0.87734686 0.91265824 > OS_Tumor36_10_201917Sample2 0.93627004 0.94319232 > OS_Tumor37_10_202221 0.93107776 0.96075927 > OS_Tumor38_10_204294 0.85892154 0.94595920 > OS_Tumor39_10_204294Sample2 0.69839075 0.76396555 > OS_Tumor40_10_205933 0.25850129 0.43418918 > OS_Tumor41_10_225662 0.71442683 0.88154146 > OS_Tumor42_10_229129 0.42328977 0.77763541 > OS_Tumor43_11_236261 0.82946721 0.87242385 > OS_Tumor44_12_211561 0.84785994 0.12366988 > Normalbone.3. 0.06840225 0.08229536 > Normalbone.UA. 0.07383344 0.12502117 > Normalbone.UA2. 0.07741817 0.09563505 > CRL_11372 0.05409689 0.13815797 > CRL_1427 0.91730069 0.92421230 > CRL_1543 0.77789918 0.94650563 > CRL_2098 0.91524115 0.50725942 > Ho_f.4610 0.05736418 0.51843963 > HTB_85 0.95464468 0.05260867 > HTB_96 0.88410529 0.92872206 > > > #Calculate the distance > Data_dist<-dist(Data_matrix) > > #Make the cluster > Data_clust<-hclust(Data_dist,method="ward") > > #Save the plot as a pdf file > pdf(file="Cluster_Probes_From_genes_morethan_2_probes_and_morethan_30_methdiff.pdf") > > #Plot the cluster > plot(Data_clust, cex=0.5) > > dev.off() #Ends the pdf saving. > > Gitte Brinch Andersen > > Kandidat-Ph.d. studerende > Biomedicinsk Institut > Wilhelm Meyers All? 4 > Aarhus Universitet > DK-8000 Aarhus C > > Mobil: +45 30433317 > E-mail: gitteba at hum-gen.au.dk<mailto:gitteba at hum-gen.au.dk> > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >-- Brian D. Ripley, ripley at stats.ox.ac.uk Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595
Meesters, Aesku.Kipp Institute
2013-Jun-27 11:47 UTC
[R] Change font size in Cluster analysis
Gitte, in addition to Brian Ripley's answer: Will you be able to read all those labels anyway? And: Have you considered using heatmap.2 (gplots package)? It's a little denser than your approach and lets you in control of the clustering function (defaults are the same as in your example). You would gain the option to display only those labels which you want to show. ________________________________________ From: r-help-bounces at r-project.org [r-help-bounces at r-project.org] on behalf of Gitte Brinch Andersen [GITTEBA at HUM-GEN.AU.DK] Sent: 27 June 2013 12:12 To: r-help at r-project.org Subject: [R] Change font size in Cluster analysis Hello I have done a cluster analysis, and I would like to change the font size of my sample names. I have tried using cex, but this doesn't work/change anything. I have tried to specify it with cex.main, cex.lab, cex.axis and cex.sub, and can change all other names in the picture but my sample names. I can't see what I am doing wrong. I hope somebody can help me, and I apologize for this probably very simple question/mistake. I have around 1000 rows and 50 columns, but have only included a few in my example. Thank you in advance! Kind regards Gitte Andersen #Read in data data<-read.table("/Users/gban/Desktop/Heatmap/Heatmap with selected genes/Probes_for_heatmap_35_meth_diff_both_hypo_and_hypermeth_Gene&probenames.txt",sep="\t",dec=",",header=TRUE,row.names=1) data OS_Tumor1_08_14985_2_3 OS_Tumor2_08_226869_1 CHST3_cg04268405_1 0.95038060 0.76433753 DLX5_cg19962750_2 0.93111825 0.75384523 ZIC4_cg12892506_3 0.86033747 0.69614933 DLX5_cg05597836_4 0.90698171 0.66414891 #Turn the data into a matrix, and transpose to get the columns to be clustered Data_matrix<-as.matrix(t(data)) Data_matrix CHST3_cg04268405_1 DLX5_cg19962750_2 OS_Tumor1_08_14985_2_3 0.9503806 0.9311183 OS_Tumor2_08_226869_1 0.7643375 0.7538452 OS_Tumor3_10_201917_2_3 0.7109182 0.7778035 OS_Tumor4_00_2395 0.7772400 0.6769241 OS_Tumor5_02_2669 0.9638739 0.9023436 OS_Tumor6_02_4738 0.9028490 0.9586764 OS_Tumor7_02_4850 0.8786524 0.8872261 OS_Tumor8_02_6935 0.8434550 0.7180251 OS_Tumor9_03_1430 0.7494400 0.9190213 OS_Tumor10_03_1701 0.9148253 0.7692125 OS_Tumor11_03_220 0.9270112 0.8607459 OS_Tumor12_03_2558 0.9344832 0.5013390 OS_Tumor13_03_373 0.9549153 0.9559071 OS_Tumor14_03_82 0.9117558 0.3993953 OS_Tumor15_06_22319 0.9580999 0.9645215 OS_Tumor16_07_16581 0.6213243 0.9033265 OS_Tumor17_07_28523 0.9064597 0.4421651 OS_Tumor18_07_3212 0.6439032 0.4344106 OS_Tumor19_07_6990 0.9350585 0.9238712 OS_Tumor20_07_6990sample2 0.9526839 0.9027684 OS_Tumor21_07_7724 0.9338156 0.8335415 OS_Tumor22_08_10238 0.9028336 0.8529122 OS_Tumor23_08_14985Sample2 0.9609952 0.9478541 OS_Tumor24_08_16592 0.9168102 0.9138002 OS_Tumor25_08_21197 0.9148711 0.9109843 OS_Tumor26_08_21197Sample2 0.9583610 0.8830407 OS_Tumor27_08_222863 0.9478853 0.8395278 OS_Tumor28_08_225814 0.9451414 0.9407933 OS_Tumor29_08_226869Sample2 0.9028336 0.8337000 OS_Tumor30_08_230660 0.9599117 0.9363075 OS_Tumor31_08_4485 0.8247909 0.8336728 OS_Tumor32_09_214654 0.9531564 0.8957473 OS_Tumor33_09_214654Sample2 0.9552210 0.9034464 OS_Tumor34_10_200150 0.9332627 0.8551589 OS_Tumor35_10_201917 0.9397219 0.9470733 OS_Tumor36_10_201917Sample2 0.9607446 0.9523402 OS_Tumor37_10_202221 0.9264254 0.9413189 OS_Tumor38_10_204294 0.8388658 0.8956207 OS_Tumor39_10_204294Sample2 0.8071109 0.8474199 OS_Tumor40_10_205933 0.8788835 0.4950936 OS_Tumor41_10_225662 0.9334545 0.8910134 OS_Tumor42_10_229129 0.5872184 0.8394597 OS_Tumor43_11_236261 0.9015548 0.9293858 OS_Tumor44_12_211561 0.6793692 0.1856015 Normalbone.3. 0.1636323 0.1222070 Normalbone.UA. 0.1934500 0.1303734 Normalbone.UA2. 0.1737224 0.1604758 CRL_11372 0.9779593 0.2533844 CRL_1427 0.9598825 0.8862426 CRL_1543 0.9283976 0.7198934 CRL_2098 0.9325895 0.6360936 Ho_f.4610 0.9370865 0.6279557 HTB_85 0.9441092 0.1037401 HTB_96 0.9511175 0.9160013 ZIC4_cg12892506_3 DLX5_cg05597836_4 OS_Tumor1_08_14985_2_3 0.86033747 0.90698171 OS_Tumor2_08_226869_1 0.69614933 0.66414891 OS_Tumor3_10_201917_2_3 0.58728927 0.65086446 OS_Tumor4_00_2395 0.41747130 0.45464648 OS_Tumor5_02_2669 0.74259213 0.88244165 OS_Tumor6_02_4738 0.79690018 0.93691928 OS_Tumor7_02_4850 0.05513471 0.91753824 OS_Tumor8_02_6935 0.70742299 0.77802530 OS_Tumor9_03_1430 0.84563086 0.87202952 OS_Tumor10_03_1701 0.81318017 0.72446802 OS_Tumor11_03_220 0.72489087 0.80580733 OS_Tumor12_03_2558 0.06656780 0.14739011 OS_Tumor13_03_373 0.94011867 0.95742989 OS_Tumor14_03_82 0.52129769 0.54734874 OS_Tumor15_06_22319 0.93025191 0.94392535 OS_Tumor16_07_16581 0.67236887 0.88546907 OS_Tumor17_07_28523 0.25764851 0.45550666 OS_Tumor18_07_3212 0.33624514 0.18623351 OS_Tumor19_07_6990 0.82904776 0.88946081 OS_Tumor20_07_6990sample2 0.76836030 0.82519665 OS_Tumor21_07_7724 0.90314315 0.71810973 OS_Tumor22_08_10238 0.83715782 0.86426252 OS_Tumor23_08_14985Sample2 0.82588214 0.90655043 OS_Tumor24_08_16592 0.77582828 0.83500490 OS_Tumor25_08_21197 0.90274785 0.96119490 OS_Tumor26_08_21197Sample2 0.87385578 0.83341529 OS_Tumor27_08_222863 0.72588195 0.59849569 OS_Tumor28_08_225814 0.87931232 0.89657489 OS_Tumor29_08_226869Sample2 0.86379063 0.88825605 OS_Tumor30_08_230660 0.92495563 0.95137547 OS_Tumor31_08_4485 0.84465179 0.66948504 OS_Tumor32_09_214654 0.92036441 0.71915709 OS_Tumor33_09_214654Sample2 0.93955431 0.46490552 OS_Tumor34_10_200150 0.80337813 0.82519665 OS_Tumor35_10_201917 0.87734686 0.91265824 OS_Tumor36_10_201917Sample2 0.93627004 0.94319232 OS_Tumor37_10_202221 0.93107776 0.96075927 OS_Tumor38_10_204294 0.85892154 0.94595920 OS_Tumor39_10_204294Sample2 0.69839075 0.76396555 OS_Tumor40_10_205933 0.25850129 0.43418918 OS_Tumor41_10_225662 0.71442683 0.88154146 OS_Tumor42_10_229129 0.42328977 0.77763541 OS_Tumor43_11_236261 0.82946721 0.87242385 OS_Tumor44_12_211561 0.84785994 0.12366988 Normalbone.3. 0.06840225 0.08229536 Normalbone.UA. 0.07383344 0.12502117 Normalbone.UA2. 0.07741817 0.09563505 CRL_11372 0.05409689 0.13815797 CRL_1427 0.91730069 0.92421230 CRL_1543 0.77789918 0.94650563 CRL_2098 0.91524115 0.50725942 Ho_f.4610 0.05736418 0.51843963 HTB_85 0.95464468 0.05260867 HTB_96 0.88410529 0.92872206 #Calculate the distance Data_dist<-dist(Data_matrix) #Make the cluster Data_clust<-hclust(Data_dist,method="ward") #Save the plot as a pdf file pdf(file="Cluster_Probes_From_genes_morethan_2_probes_and_morethan_30_methdiff.pdf") #Plot the cluster plot(Data_clust, cex=0.5) dev.off() #Ends the pdf saving. Gitte Brinch Andersen Kandidat-Ph.d. studerende Biomedicinsk Institut Wilhelm Meyers All? 4 Aarhus Universitet DK-8000 Aarhus C Mobil: +45 30433317 E-mail: gitteba at hum-gen.au.dk<mailto:gitteba at hum-gen.au.dk> [[alternative HTML version deleted]]