Hi,
Not sure if you wanted the entries with "0".
library(reshape2)
?dfMelt<-melt(df,id.var=c("Country","Iso"))
#subset those with "1"
dfNew<- subset(dfMelt,value==1,select=-4)?row.names(dfNew)<- 1:nrow(dfNew)
?dfNew
#??????? Country Iso?? variable
#1????? Zimbabwe? ZW????? Abaco
#2? South Africa? ZA????? Abaco
#3??? Madagascar? MG????? Abaco
#4????????? Mali? ML????? Abaco
#5???????? Kenya? KE????? Abaco
#6? Burkina Faso? BF????? Abaco
#7????? Tanzania? TZ Adaptclone
#8????????? Mali? ML Adaptclone
#9??? Mozambique? MZ Adaptclone
#10?? Madagascar? MG Adaptclone
#11??????? Ghana? GH Adaptclone
#12????? Nigeria? NG Adaptclone
A.K.
Hello
I have the following dataframe :
df <- data.frame(
Country=c("Zimbabwe","Burkina Faso","South
Africa","Madagascar","Tanzania",
"Mali","Mozambique","Madagascar","Ghana","Nigeria","Kenya","Burkina
Faso",
? "South
Africa","Tanzania","Kenya","Ethiopia" ) ,
Iso=c("ZW","BF","ZA","MG","TZ","ML","MZ","MG","GH","NG","KE","BF",
? "ZA","TZ","KE","ET") ,
Abaco=c(1,0,1,1,0,1,0,0,0,0,1,1,0,0,0,0) ,
Adaptclone= c(0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0)
)
There is a lot of column like Abaco, Adaptclone,...
I would like to built a dataframe
wich transforms the initial dataframe of 4 columns into a dataframe of 3
columns as the following dataframe
Country ? ? ? ? ?Iso ? ?Project
Zimbabwe ? ? ? ? ZW ? ? Abaco
South Africa ? ? ZA ? ? Abaco
Madagascar ? ? ? MG ? ? Abaco
Tanzania ? ? ? ? TZ ? ? Adaptclone
Mali ? ? ? ? ? ? ML ? ? Abaco
Mali ? ? ? ? ? ? ML ? ? Adaptclone
......
Any idea ?
Michel
--
Michel ARNAUD
Charg? de mission aupr?s du DRH
DGDRD-Drh - TA 174/04
Av Agropolis 34398 Montpellier cedex 5
tel : 04.67.61.75.38
fax : 04.67.61.57.87
port: 06.47.43.55.31