Hi guys,
I am working now for several years in R and I would say I manage things pretty
easily, but with the foreach loop I have my problems. I call for a simulation a
double foreach loop and this works fine. Inside the second loop (which I plan to
parallelize later on) I call Rs optim-function:
"simulateML" <- function(sim.it = 250, input.path,
output.path, T = 390, ncore = 2) {
## load packages ##
library("mmstruct")
library("doMC")
library("foreach")
## read input parameters ##
input <- read.csv(input.path, header = FALSE)
## create container to store results ##
results <- data.frame(NA, nrow = NROW(input) * sim.it, ncol = 12)
## initialize the parallel backend ##
registerDoMC(ncore)
result.list <- foreach(i = 1:2) %do% {
input <- as.matrix(input)
input.row <- input[i, ]
list <- foreach(i = 1:2, .combine = rbind, .packages =
c("mmstruct", "stats")) %do% {
data <- simulateEKOP(size = input.row[1], alpha =
input.row[2],
epsilon = input.row[1], delta =
input.row[4],
mu = input.row[5], T = T)
data <- data[,4]
## create start values ##
tmp <- mean(data)/T
startpar <- c(0, tmp * 0.75/2, tmp * 0.25/2)
## set options for optimization ##
optim_fn <- computeKokotLik
optim_method <- "L-BFGS-B"
optim_lower <- c(-1e+7, 0, 0)
optim_upper <- rep(1e+7, 3)
optim_fnscale <- -1
optim_maxit <- 200
optim_ctrl <- list(fnscale = optim_fnscale,
maxit = optim_maxit)
## start optimization ##
res <- optim(par = startpar, fn = optim_fn, data =
data, T = T,
methodLik = "approx", method =
optim_method,
lower = optim_lower, upper =
optim_upper,
control = optim_ctrl, hessian = TRUE)
res$par
}
print(list)
}
}
Data simulation and thecreation of startpar works fine, but the parameters in
res$par are always the start parameters. If I run the same commands directly on
the shell I get in res$par the optimized parameters - only inside the foreach
loop optim seems not to work. What could that be?
Best
Simon