alfonso.carfora at uniparthenope.it
2013-May-10 10:51 UTC
[R] maxLik: different estimations from different packages
Dear all, we are computing maximum likelihood estimations using maxLik package and we realized that the results of the estimation depend on the version of the package installed for example if we try to estimate this function with an old version of maxLik under R 2.13.1 (32 bit version installed 2 years ago): L<-function (param) {b0t<-param[1] p1t<-param[2] p2t<-param[3] p3t<-param[4] p4t<-param[5] for(i in 17:T) {n[i,]<- b0t + p1t*a[i-1] + p2t*sum(a[(i-4):(i-1)]) + p3t*(sum(a[(i-8):(i-1)])) + p4t*(sum(a[(i-16):(i-1)])) m[i,]<-exp(n[i])/(1+exp(n[i])) ll[i-16,]<-a[i]*log(m[i])+(1-a[i])*log(1-m[i]) } sum(ll)} b2<-maxLik(L, start=c(-2.8158,5,-1,0.3213,-0.3112)) we obtain this results: summary(b2) Maximum Likelihood estimation Newton-Raphson maximisation, 16 iterations Return code 2: successive function values within tolerance limit Log-Likelihood: -38.11285 5 free parameters Estimates: Estimate Std. error t value Pr(> t) [1,] -2.81578 0.43548 -6.4660 1.007e-10 *** [2,] 50.50024 13.17046 3.8344 0.0001259 *** [3,] -11.53344 3.31075 -3.4836 0.0004947 *** [4,] 0.32130 0.42978 0.7476 0.4547096 [5,] -0.31121 0.23245 -1.3388 0.1806280 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 -------------------------------------------- NB: a is a binary time series if we try to estimate the same function using the last version of maxLik under R.3.0 (64 bit latest version) the estimation do not converge and this is the error message: Iteration 15 Parameter: [1] -2.8146429 51.3042554 -11.7373313 0.3245214 -0.3125767 Gradient: [1] NaN NaN NaN NaN NaN Errore in maxNRCompute(fn = logLikAttr, fnOrig = fn, gradOrig = grad, hessOrig = hess, : NA in gradient What causes this? Thanks Alfonso ****************************************************************************** IL MERITO DEGLI STUDENTI VIENE RICONOSCIUTO Il 5 per mille all'Universita' degli Studi di Napoli "Parthenope" incrementa le borse di studio agli studenti - codice fiscale 80018240632 http://www.uniparthenope.it/index.php/5xmille http://www.uniparthenope.it/index.php/it/avvisi-sito-di-ateneo/2943-la-parthenope-premia-il-tuo-voto-di-diploma-ed-il-tuo-imegno-con-i-proventi-del-5-per-mille Questa informativa e' inserita in automatico dal sistema al fine esclusivo della realizzazione dei fini istituzionali dell'ente.
Arne Henningsen
2013-May-10 11:40 UTC
[R] maxLik: different estimations from different packages
Dear Alfonso On 10 May 2013 12:51, <alfonso.carfora at uniparthenope.it> wrote:> we are computing maximum likelihood estimations using maxLik package and we > realized that the results of the estimation depend on the version of the > package installed > > for example if we try to estimate this function with an old version of > maxLik under R 2.13.1 (32 bit version installed 2 years ago): > > > L<-function (param) {b0t<-param[1] > p1t<-param[2] > p2t<-param[3] > p3t<-param[4] > p4t<-param[5] > > for(i in 17:T) {n[i,]<- b0t + p1t*a[i-1] + p2t*sum(a[(i-4):(i-1)]) + > p3t*(sum(a[(i-8):(i-1)])) + p4t*(sum(a[(i-16):(i-1)])) > m[i,]<-exp(n[i])/(1+exp(n[i])) > ll[i-16,]<-a[i]*log(m[i])+(1-a[i])*log(1-m[i]) } > sum(ll)} > b2<-maxLik(L, start=c(-2.8158,5,-1,0.3213,-0.3112)) > > > we obtain this results: > > summary(b2) > > Maximum Likelihood estimation > Newton-Raphson maximisation, 16 iterations > Return code 2: successive function values within tolerance limit > Log-Likelihood: -38.11285 > 5 free parameters > Estimates: > Estimate Std. error t value Pr(> t) > [1,] -2.81578 0.43548 -6.4660 1.007e-10 *** > [2,] 50.50024 13.17046 3.8344 0.0001259 *** > [3,] -11.53344 3.31075 -3.4836 0.0004947 *** > [4,] 0.32130 0.42978 0.7476 0.4547096 > [5,] -0.31121 0.23245 -1.3388 0.1806280 > --- > Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > -------------------------------------------- > > NB: a is a binary time series > > if we try to estimate the same function using the last version of maxLik > under R.3.0 (64 bit latest version) the estimation do not converge and this > is the error message: > > Iteration 15 > Parameter: > [1] -2.8146429 51.3042554 -11.7373313 0.3245214 -0.3125767 > Gradient: > [1] NaN NaN NaN NaN NaN > Errore in maxNRCompute(fn = logLikAttr, fnOrig = fn, gradOrig = grad, > hessOrig = hess, : > NA in gradient > > What causes this?It could be that the NaNs in the gradients are caused by rounding errors and/or approximation errors in the numerical (finite-difference) derivatives when using R.3.0 64 bit, because different hardware and different software versions (e.g. R, mathematical libraries, OS) could lead to different rounding errors. In this case, the specification of a function that returns analytical gradients could solve the problem. If this does not solve the problem and you cannot find out the reason for the NaNs in the analytical gradients yourself, please provide a reproducible example so that we could help you with this. Please note that you could also ask questions regarding the maxLik package via a forum at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ ... and please do not forget to cite maxLik in your publications :-) Best regards, Arne -- Arne Henningsen http://www.arne-henningsen.name