I would like to fit a period (annual) model in glmm. Here is the script I do: # Generate "dummy" periodic counts with effect of a covariate co # of course I plan to use this script on my own data ! d <- 1:500 co <- rnorm(500, 10, 2) yco <- (1+sin(2*pi*(d+100)/365))*10*co/10+co y <- floor(rnorm(500, yco, 10)) df1 <- data.frame(days=d, number=y, covariate=co, ID=1) df1[df1$number<0, "number"] <- 0 # Just to look that all is ok: plot(df1$days, df1$number, type="l", ylim=c(0,80), bty="n") plot(df1$number, df1$covariate, bty="n") # days is a fixed effect (I choose the days of observations) # covariate is a random effect # I fit periodic effect according to days as: sin( 2*3.1416 * (days) / 365) + cos( 2*3.1416 * (days) / 365) library(MASS) fit <- glmmPQL ( number ~ covariate + sin( 2*3.1416 * (days) / 365) + cos( 2*3.1416 * (days) / 365), family=quasipoisson(link = "log"), data=df1, random = ~ 1+covariate | ID) # test for the effects library(spida) wald( fit, list("covariate", "days")) # predictions: all is good ! plot(df1$days, df1$number, type="l", ylim=c(0, 80), bty="n", main="ID=1") par(new=TRUE) newd1 <- data.frame(days=d, covariate=5, ID=1) p1 <- predict(fit, newd1) plot(d, exp(p1), type="l", col="red", ylim=c(0, 80), bty="n", axes=FALSE, xlab="", ylab="") par(new=TRUE) newd1 <- data.frame(days=d, covariate=10, ID=1) p1 <- predict(fit, newd1) plot(d, exp(p1), type="l", col="green", ylim=c(0, 80), bty="n", axes=FALSE, xlab="", ylab="") par(new=TRUE) newd1 <- data.frame(days=d, covariate=15, ID=1) p1 <- predict(fit, newd1) plot(d, exp(p1), type="l", col="blue", ylim=c(0, 80), bty="n", axes=FALSE, xlab="", ylab="") legend("topleft", legend=c("covariate=5", "covariate=10", "covariate=15"), lty=1, col=c("red", "green", "blue")) Now my questions: - The periodic effect has two components, sin and cos dependent on "days". After the Wald test, I have then two p values for "days" effect (one for sin and one for cos). How can I combine these two p-values to get a global effect of periodic effect ? - If I want to setup interaction between periodic effect of "days" and "covariate", how I can do as "days" appears in two effects (sin and cos) ? A third question related, is it possible to use a glmm with negative binomial distribution ? I don't find still... ... or perhaps you have a better way to do all of that ! Thanks a lot. Marc Girondot