I'm working with capscale and permutest for the first time, and having trouble getting statistical analyses for more than one constraining variable. I've read the documentation, but setting first=FALSE or using by="axis" doesn't seem to be helping. capscale seems to be fine, I receive output for more than one constrained axis. What am I doing wrong? capscale.Nrem.results<-capscale(as.dist(qiime.data$distmat)~ N+rem+N*rem+Condition(dateFac), factor.frame) capscale.Nrem.results Inertia Proportion Rank Total 1.454538 Real Total 1.459802 1.000000 Conditional 0.117117 0.080228 1 Constrained 0.386228 0.264576 3 Unconstrained 0.956457 0.655197 22 Imaginary -0.005264 2 Inertia is squared Unknown distance Eigenvalues for constrained axes: CAP1 CAP2 CAP3 0.29869 0.05395 0.03359 Eigenvalues for unconstrained axes: MDS1 MDS2 MDS3 MDS4 MDS5 MDS6 MDS7 MDS8 0.27719 0.13725 0.11048 0.06691 0.05551 0.04940 0.03892 0.03468 (Showed only 8 of all 22 unconstrained eigenvalues) sig.Nrem <- permutest(capscale.Nrem.results,permutations=999, by="margin", model="direct",first=FALSE) sig.Nrem Permutation test for capscale Call: capscale(formula = as.dist(qiime.data$distmat) ~ N + rem + Condition(dateFac) + N:rem, data factor.frame) Permutation test for all constrained eigenvalues Pseudo-F: 2.961281 (with 3, 22 Degrees of Freedom) Significance: 0.001 Based on 999 permutations under direct model. [[alternative HTML version deleted]]