Hello there! Remmy is my name and I came across an interesting code in R on this web stat.ethz.ch/pipermail/r-help/2004-May/050424.html , there are some parts that I have not followed and I would like to get some comments if you may! Please comment on the highlighted two parts of the code below in color blue! I create a rotine for a problem like this, I hope this is useful for you ------------ ############################################# ## MARKOV CHAIN ## ## ## ## ini- initial state ## ## trans- transition matrix ## ## n - number of transitions ## ## f - ini%*%trans ## ## fase - f consolidate ## ## ## ############################################# # initial state ini<-matrix(c(10,0,0,0,0,0,0,0,0),nrow=3,ncol=3) # transition matrix # # [,1] [,2] [,3] # [1,] 0.85 0.1 0.05 # [2,] 0.00 0.7 0.3 # [3,] 0.00 0.0 1.0 # # In R the command is trans<-matrix(c(.85,0,0,.1,.7,0,0.05,0.3,1),ncol=3) markov<-function(ini,trans,n){ l<-ncol(ini) fase<-matrix(0,nrow=l,ncol=l) fases<-array(0,dim=c(nrow(ini),ncol(ini),n)) for (i in 1:n){ f<-ini%*%trans for (w in 1:l){fase[w,w]<-sum(f[,w])} ini<-fase fases[,,i]<-fase # print(fase) # # Fase allow calcule de value for transition: # If sate 1 value 0,95, state 2 value 0,3 and state 3 # value 0 QALY. # I´m calculate de value of any transition if # print(sum(fase%*%c(.95,.3,0))) # # } return(fases) } [[alternative HTML version deleted]]