Hi R-fellows, I am trying to simulate a multivariate correlated sample via the Gaussian copula method. One variable is a binary variable, that should be autocorrelated. The autocorrelation should be rho = 0.2. Furthermore, the overall probability to get either outcome of the binary variable should be 0.5. Below you can see the R code (I use for simplicity a diagonal matrix in rmvnorm even if it produces no correlated sample): "sampleCop" <- function(n = 1000, rho = 0.2) { require(splus2R) mvrs <- rmvnorm(n + 1, mean = rep(0, 3), cov = diag(3)) pmvrs <- pnorm(mvrs, 0, 1) var1 <- matrix(0, nrow = n + 1, ncol = 1) var1[1] <- qbinom(pmvrs[1, 1], 1, 0.5) if(var1[1] == 0) var1[nrow(mvrs)] <- -1 for(i in 1:(nrow(pmvrs) - 1)) { if(pmvrs[i + 1, 1] <= rho) var1[i + 1] <- var1[i] else var1[i + 1] <- var1[i] * (-1) } sample <- matrix(0, nrow = n, ncol = 4) sample[, 1] <- var1[1:nrow(var1) - 1] sample[, 2] <- var1[2:nrow(var1)] sample[, 3] <- qnorm(pmvrs[1:nrow(var1) - 1, 2], 0, 1, 1, 0) sample[, 4] <- qnorm(pmvrs[1:nrow(var1) - 1, 3], 0, 1, 1, 0) sample } Now, the code is fine, everything compiles. But when I compute the autocorrelation of the binary variable, it is not 0.2, but 0.6. Does anyone know why this happens? Best Regards Simon [[alternative HTML version deleted]]