Dear R users, I have a question regarding the gee() (from package gee) and geeglm() (from package geepack). Here is the head() from my data: R> head(compl.samples_long) UserID Intervention PHQ_base compl_bin Sex EFE Neuro depr0 subject time PHQ 1.1 10004 1 6 2 2 20 23 2 1 1 5 2.1 10009 1 0 2 2 6 13 2 2 1 11 3.1 10013 1 2 2 2 30 31 1 3 1 1 4.1 10015 2 4 1 2 48 31 1 4 1 3 5.1 10016 1 1 2 2 10 32 2 5 1 12 7.1 10020 1 5 2 1 47 23 1 7 1 5 stress hours errors id 1.1 1 70 1 1 2.1 0 50 1 2 3.1 1 60 2 3 4.1 1 55 1 4 5.1 0 70 1 5 7.1 0 85 2 7 When I try to use geeglm(), I get error: R> geeInt=(geeglm(PHQ~as.factor(compl_bin)+Neuro+PHQ_base+as.factor(depr0)+EFE+as.factor(Sex)+hours+stress+as.factor(errors),family = poisson,data=compl.samples_long ,id=subject, corst="exchangeable")) Error in geese.fit(xx, yy, id, offset, soffset, w, waves = waves, zsca, : nrow(zsca) and length(y) not match The text of the error message does not seem helpfull, since whatever typo you do, you get the same message. However, I do not get any complains if I use gee() function from gee package, but I get a strange working correlation matrix: R> geeInt=(gee(PHQ~as.factor(compl_bin)+Neuro+PHQ_base+as.factor(depr0)+EFE+as.factor(Sex)+hours+stress+as.factor(errors),family = poisson,data=compl.samples_long ,id=subject, corst="exchangeable")) R> summary(geeInt) Coefficients: Estimate Naive S.E. Naive z Robust S.E. (Intercept) 0.7538052712 0.181793256 4.1464974 0.194869157 as.factor(Intervention)2 -0.1305672837 0.070750465 -1.8454619 0.069618104 Neuro 0.0225507686 0.004412580 5.1105631 0.004767788 PHQ_base 0.0344067686 0.017511477 1.9648125 0.015846200 as.factor(depr0)2 -0.0456275666 0.071731191 -0.6360910 0.072515391 EFE 0.0004936796 0.003356067 0.1471006 0.003139989 as.factor(Sex)2 0.0571359598 0.071662335 0.7972941 0.073569880 hours 0.0096543634 0.001757295 5.4938782 0.001958358 stress -0.0763068749 0.060170447 -1.2681786 0.054164383 as.factor(errors)2 -0.3436635241 0.080389082 -4.2750025 0.079987789 Robust z (Intercept) 3.8682636 as.factor(Intervention)2 -1.8754789 Neuro 4.7298174 PHQ_base 2.1712946 as.factor(depr0)2 -0.6292122 EFE 0.1572234 as.factor(Sex)2 0.7766216 hours 4.9298254 stress -1.4088017 as.factor(errors)2 -4.2964499 Working Correlation [,1] [,2] [,3] [,4] [1,] 1 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 I also tried to use SAS proc genmode and did not get any complains but the p-values are different from that of based on gee() output. If you have any ideas why geeglm does not work and why gee() gives such strange Working correlation, it will be very helpfull!! Thank you!