Dear R users, I have a hard time interpreting the covariances in the parameter estimates output (standardized), even in the example documented (PoliticalDemocracy). Can anyone tell me if the estimated covariances are residual covariances (unexplained by the model), or the covariances of the observable variables? I haved checked the data and it does not look like the covariances of the observable variables, however when I tried to find out using simulated data ( with correlated residuals) the estimates did not seem to be the covariance of the residuals either (much much underestimated). Can anyone help? Below is the output: lavaan (0.4-14) converged normally after 70 iterations Number of observations 75 Estimator ML Minimum Function Chi-square 38.125 Degrees of freedom 35 P-value 0.329 Parameter estimates: Information Expected Standard Errors Standard Estimate Std.err Z-value P(>|z|) Std.lv Std.all Latent variables: Ind60 =~ x1 1.000 0.670 0.920 x2 2.180 0.139 15.742 0.000 1.460 0.973 x3 1.819 0.152 11.967 0.000 1.218 0.872 Dem60 =~ y1 1.000 2.223 0.850 y2 1.257 0.182 6.889 0.000 2.794 0.717 y3 1.058 0.151 6.987 0.000 2.351 0.722 y4 1.265 0.145 8.722 0.000 2.812 0.846 Dem65 =~ y5 1.000 2.103 0.808 y6 1.186 0.169 7.024 0.000 2.493 0.746 y7 1.280 0.160 8.002 0.000 2.691 0.824 y8 1.266 0.158 8.007 0.000 2.662 0.828 Regressions: Dem60 ~ Ind60 1.483 0.399 3.715 0.000 0.447 0.447 Dem65 ~ Ind60 0.572 0.221 2.586 0.010 0.182 0.182 Dem60 0.837 0.098 8.514 0.000 0.885 0.885 Covariances: y1 ~~ y5 0.624 0.358 1.741 0.082 0.624 0.296 y2 ~~ y4 1.313 0.702 1.871 0.061 1.313 0.273 y6 2.153 0.734 2.934 0.003 2.153 0.356 y3 ~~ y7 0.795 0.608 1.308 0.191 0.795 0.191 y4 ~~ y8 0.348 0.442 0.787 0.431 0.348 0.109 y6 ~~ y8 1.356 0.568 2.386 0.017 1.356 0.338 Variances: x1 0.082 0.019 0.082 0.154 x2 0.120 0.070 0.120 0.053 x3 0.467 0.090 0.467 0.239 y1 1.891 0.444 1.891 0.277 y2 7.373 1.374 7.373 0.486 y3 5.067 0.952 5.067 0.478 y4 3.148 0.739 3.148 0.285 y5 2.351 0.480 2.351 0.347 y6 4.954 0.914 4.954 0.443 y7 3.431 0.713 3.431 0.322 y8 3.254 0.695 3.254 0.315 Ind60 0.448 0.087 1.000 1.000 Dem60 3.956 0.921 0.800 0.800 Dem65 0.172 0.215 0.039 0.039 -- View this message in context: http://r.789695.n4.nabble.com/covariance-estimate-in-function-sem-Lavaan-tp4638454.html Sent from the R help mailing list archive at Nabble.com.
On 07/30/2012 11:00 PM, Luna wrote:> Dear R users, > I have a hard time interpreting the covariances in the parameter estimates > output (standardized), even in the example documented (PoliticalDemocracy). > Can anyone tell me if the estimated covariances are residual covariances > (unexplained by the model), or the covariances of the observable variables?They are *residual* covariances.> I haved checked the data and it does not look like the covariances of the > observable variables, however when I tried to find out using simulated data > ( with correlated residuals) the estimates did not seem to be the covariance > of the residuals either (much much underestimated). Can anyone help?How did you simulate your data? It is rather tricky to generate data under a known CFA/SEM model with pre-specified residual (co)variances. Yves Rosseel. http://lavaan.org