John Sorkin
2012-Jun-12 14:51 UTC
[R] lme random slope results the same as random slope and intercept model
R 2.15.0 Windows XP Can someone help me understand why a random intercept model gives the same results as the random intercept and slope models? I am rather surprised by the results I am getting from lme. I am running three models (1) random intercept fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) (2) random slope> fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit)(3) random intercept and slope. fitRIRT <- lme(echogen~time,random=~ 1+time|subject,data=repeatdata,na.action=na.omit) The results of the (1) random intercept model are different from the (2) random slope model,not a surprise. The results of the (1) random intercept model and the (3) random intercept and slope models are exactly the same, a surprise! Below I copy the results for each model. Further below I give all my output. RESULTS FROM EACH MODEL (1) Random intercept results: Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 (2) Random slope results Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 (3) Random intercept and slope results Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 COMPLETE OUTPUT> repeatdatasubject time value echogen 1 1 1 22 63 2 1 3 40 60 3 1 NA NA NA 4 1 NA NA NA 5 1 NA NA NA 6 2 1 39 19 7 2 NA NA NA 8 2 NA NA NA 9 2 NA NA NA 10 2 NA NA NA 11 3 1 47 76 12 3 6 43 82 13 3 NA NA NA 14 3 NA NA NA 15 3 NA NA NA 16 4 1 44 44 17 4 3 50 50 18 4 7 67 67 19 4 21 39 39 20 4 NA NA NA 21 5 1 42 58 22 5 3 60 78 23 5 7 86 85 24 5 19 56 60 25 5 35 39 84 26 6 1 57 67 27 6 NA NA NA 28 6 NA NA NA 29 6 NA NA NA 30 6 NA NA NA 31 7 1 71 58 32 7 3 55 67 33 7 10 57 95 34 7 17 62 94 35 7 25 47 73 36 8 1 79 105 37 8 NA NA NA 38 8 NA NA NA 39 8 NA NA NA 40 8 NA NA NA 41 9 1 60 70 42 9 3 64 62 43 9 9 68 65 44 9 NA NA NA 45 9 NA NA NA 46 10 1 47 75 47 10 3 49 73 48 10 9 46 70 49 10 17 48 70 50 10 NA NA NA 51 11 1 57 97 52 11 6 75 108 53 11 NA NA NA 54 11 NA NA NA 55 11 NA NA NA 56 12 1 85 116 57 12 3 77 110 58 12 NA NA NA 59 12 NA NA NA 60 12 NA NA NA 61 13 1 34 51 62 13 NA NA NA 63 13 NA NA NA 64 13 NA NA NA 65 13 NA NA NA 66 14 1 30 59 67 14 3 NA NA 68 14 NA NA NA 69 14 NA NA NA 70 14 NA NA NA 71 15 1 42 47 72 15 3 50 62 73 15 11 33 75 74 15 NA NA NA 75 15 NA NA NA 76 16 1 NA 83 77 16 7 NA 88 78 16 13 NA 74 79 16 NA NA NA 80 16 NA NA NA 81 17 1 NA 51 82 17 7 NA 62 83 17 NA NA NA 84 17 NA NA NA 85 17 NA NA NA 86 18 1 NA 39 87 18 7 NA 44 88 18 NA NA NA 89 18 NA NA NA 90 18 NA NA NA 91 19 1 NA 45 92 19 7 NA 56 93 19 14 NA NA 94 19 NA NA NA 95 19 NA NA NA 96 20 1 NA 45 97 20 7 NA 57 98 20 NA NA NA 99 20 NA NA NA 100 20 NA NA NA 101 21 1 NA 80 102 21 NA NA NA 103 21 NA NA NA 104 21 NA NA NA 105 21 NA NA NA 106 22 1 NA 42 107 22 7 NA 33 108 22 14 NA 36 109 22 21 NA NA 110 22 NA NA NA 111 23 1 NA 69 112 23 7 NA 68 113 23 NA NA NA 114 23 NA NA NA 115 23 NA NA NA 116 24 1 NA 48 117 24 6 NA 58 118 24 14 NA 82 119 24 NA NA NA 120 24 NA NA NA 121 25 1 NA 67 122 25 NA NA NA 123 25 NA NA NA 124 25 NA NA NA 125 25 NA NA NA> > library(nlme) > fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) > summary(fitRI)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 491.097 499.1984 -241.5485 Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362748 -0.52710871 0.02948022 0.41793307 1.77340062 Number of Observations: 58 Number of Groups: 25> > fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 515.2225 523.3239 -253.6112 Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -2.35381603 -0.69490411 -0.04299361 0.52973023 2.57509584 Number of Observations: 58 Number of Groups: 25> > fitRIRT <- lme(echogen~time,random=~ 1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRIRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 495.097 507.2491 -241.5485 Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362755 -0.52710871 0.02948008 0.41793322 1.77340082 Number of Observations: 58 Number of Groups: 25>John David Sorkin M.D., Ph.D. Chief, Biostatistics and Informatics University of Maryland School of Medicine Division of Gerontology Baltimore VA Medical Center 10 North Greene Street GRECC (BT/18/GR) Baltimore, MD 21201-1524 (Phone) 410-605-7119 (Fax) 410-605-7913 (Please call phone number above prior to faxing) Confidentiality Statement: This email message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply email and destroy all copies of the original message.
ONKELINX, Thierry
2012-Jun-12 15:14 UTC
[R] lme random slope results the same as random slope and intercept model
Dear John, R-sig-mixed-models is a better list for this kind of questions. It looks like the model finds no evidence for a random slope. Notice the very small variance of the random slope. In the model without random intercept, the random slope tries to mimic the effect of a random intercept. Best regards, Thierry ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25 1070 Anderlecht Belgium + 32 2 525 02 51 + 32 54 43 61 85 Thierry.Onkelinx at inbo.be www.inbo.be To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey -----Oorspronkelijk bericht----- Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] Namens John Sorkin Verzonden: dinsdag 12 juni 2012 16:52 Aan: r-help at r-project.org Onderwerp: [R] lme random slope results the same as random slope and intercept model R 2.15.0 Windows XP Can someone help me understand why a random intercept model gives the same results as the random intercept and slope models? I am rather surprised by the results I am getting from lme. I am running three models (1) random intercept fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) (2) random slope> fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit)(3) random intercept and slope. fitRIRT <- lme(echogen~time,random=~ 1+time|subject,data=repeatdata,na.action=na.omit) The results of the (1) random intercept model are different from the (2) random slope model,not a surprise. The results of the (1) random intercept model and the (3) random intercept and slope models are exactly the same, a surprise! Below I copy the results for each model. Further below I give all my output. RESULTS FROM EACH MODEL (1) Random intercept results: Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 (2) Random slope results Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 (3) Random intercept and slope results Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 COMPLETE OUTPUT> repeatdatasubject time value echogen 1 1 1 22 63 2 1 3 40 60 3 1 NA NA NA 4 1 NA NA NA 5 1 NA NA NA 6 2 1 39 19 7 2 NA NA NA 8 2 NA NA NA 9 2 NA NA NA 10 2 NA NA NA 11 3 1 47 76 12 3 6 43 82 13 3 NA NA NA 14 3 NA NA NA 15 3 NA NA NA 16 4 1 44 44 17 4 3 50 50 18 4 7 67 67 19 4 21 39 39 20 4 NA NA NA 21 5 1 42 58 22 5 3 60 78 23 5 7 86 85 24 5 19 56 60 25 5 35 39 84 26 6 1 57 67 27 6 NA NA NA 28 6 NA NA NA 29 6 NA NA NA 30 6 NA NA NA 31 7 1 71 58 32 7 3 55 67 33 7 10 57 95 34 7 17 62 94 35 7 25 47 73 36 8 1 79 105 37 8 NA NA NA 38 8 NA NA NA 39 8 NA NA NA 40 8 NA NA NA 41 9 1 60 70 42 9 3 64 62 43 9 9 68 65 44 9 NA NA NA 45 9 NA NA NA 46 10 1 47 75 47 10 3 49 73 48 10 9 46 70 49 10 17 48 70 50 10 NA NA NA 51 11 1 57 97 52 11 6 75 108 53 11 NA NA NA 54 11 NA NA NA 55 11 NA NA NA 56 12 1 85 116 57 12 3 77 110 58 12 NA NA NA 59 12 NA NA NA 60 12 NA NA NA 61 13 1 34 51 62 13 NA NA NA 63 13 NA NA NA 64 13 NA NA NA 65 13 NA NA NA 66 14 1 30 59 67 14 3 NA NA 68 14 NA NA NA 69 14 NA NA NA 70 14 NA NA NA 71 15 1 42 47 72 15 3 50 62 73 15 11 33 75 74 15 NA NA NA 75 15 NA NA NA 76 16 1 NA 83 77 16 7 NA 88 78 16 13 NA 74 79 16 NA NA NA 80 16 NA NA NA 81 17 1 NA 51 82 17 7 NA 62 83 17 NA NA NA 84 17 NA NA NA 85 17 NA NA NA 86 18 1 NA 39 87 18 7 NA 44 88 18 NA NA NA 89 18 NA NA NA 90 18 NA NA NA 91 19 1 NA 45 92 19 7 NA 56 93 19 14 NA NA 94 19 NA NA NA 95 19 NA NA NA 96 20 1 NA 45 97 20 7 NA 57 98 20 NA NA NA 99 20 NA NA NA 100 20 NA NA NA 101 21 1 NA 80 102 21 NA NA NA 103 21 NA NA NA 104 21 NA NA NA 105 21 NA NA NA 106 22 1 NA 42 107 22 7 NA 33 108 22 14 NA 36 109 22 21 NA NA 110 22 NA NA NA 111 23 1 NA 69 112 23 7 NA 68 113 23 NA NA NA 114 23 NA NA NA 115 23 NA NA NA 116 24 1 NA 48 117 24 6 NA 58 118 24 14 NA 82 119 24 NA NA NA 120 24 NA NA NA 121 25 1 NA 67 122 25 NA NA NA 123 25 NA NA NA 124 25 NA NA NA 125 25 NA NA NA> > library(nlme) > fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) > summary(fitRI)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 491.097 499.1984 -241.5485 Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362748 -0.52710871 0.02948022 0.41793307 1.77340062 Number of Observations: 58 Number of Groups: 25> > fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 515.2225 523.3239 -253.6112 Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -2.35381603 -0.69490411 -0.04299361 0.52973023 2.57509584 Number of Observations: 58 Number of Groups: 25> > fitRIRT <- lme(echogen~time,random=~ > 1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRIRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 495.097 507.2491 -241.5485 Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362755 -0.52710871 0.02948008 0.41793322 1.77340082 Number of Observations: 58 Number of Groups: 25>John David Sorkin M.D., Ph.D. Chief, Biostatistics and Informatics University of Maryland School of Medicine Division of Gerontology Baltimore VA Medical Center 10 North Greene Street GRECC (BT/18/GR) Baltimore, MD 21201-1524 (Phone) 410-605-7119 (Fax) 410-605-7913 (Please call phone number above prior to faxing) Confidentiality Statement: This email message, including any attachments, is for th...{{dropped:13}}
John Sorkin
2012-Jun-12 15:25 UTC
[R] lme random slope results the same as random slope and intercept model
Thierry, Thank you for your thoughts. I agree with your analysis, but am still surprised that the results are not approximately, but exactly the same to the limit of the precision of the printed results. The exact comparability of the results makes me wonder if something else is going on that I have missed. Thanks, John John David Sorkin M.D., Ph.D. Chief, Biostatistics and Informatics University of Maryland School of Medicine Division of Gerontology Baltimore VA Medical Center 10 North Greene Street GRECC (BT/18/GR) Baltimore, MD 21201-1524 (Phone) 410-605-7119 (Fax) 410-605-7913 (Please call phone number above prior to faxing)>>> "ONKELINX, Thierry" <Thierry.ONKELINX at inbo.be> 6/12/2012 11:14 AM >>> Dear John, R-sig-mixed-models is a better list for this kind of questions. It looks like the model finds no evidence for a random slope. Notice the very small variance of the random slope. In the model without random intercept, the random slope tries to mimic the effect of a random intercept. Best regards, Thierry ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25 1070 Anderlecht Belgium + 32 2 525 02 51 + 32 54 43 61 85 Thierry.Onkelinx at inbo.be www.inbo.be To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey -----Oorspronkelijk bericht----- Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] Namens John Sorkin Verzonden: dinsdag 12 juni 2012 16:52 Aan: r-help at r-project.org Onderwerp: [R] lme random slope results the same as random slope and intercept model R 2.15.0 Windows XP Can someone help me understand why a random intercept model gives the same results as the random intercept and slope models? I am rather surprised by the results I am getting from lme. I am running three models (1) random intercept fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) (2) random slope> fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit)(3) random intercept and slope. fitRIRT <- lme(echogen~time,random=~ 1+time|subject,data=repeatdata,na.action=na.omit) The results of the (1) random intercept model are different from the (2) random slope model,not a surprise. The results of the (1) random intercept model and the (3) random intercept and slope models are exactly the same, a surprise! Below I copy the results for each model. Further below I give all my output. RESULTS FROM EACH MODEL (1) Random intercept results: Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 (2) Random slope results Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 (3) Random intercept and slope results Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 COMPLETE OUTPUT> repeatdatasubject time value echogen 1 1 1 22 63 2 1 3 40 60 3 1 NA NA NA 4 1 NA NA NA 5 1 NA NA NA 6 2 1 39 19 7 2 NA NA NA 8 2 NA NA NA 9 2 NA NA NA 10 2 NA NA NA 11 3 1 47 76 12 3 6 43 82 13 3 NA NA NA 14 3 NA NA NA 15 3 NA NA NA 16 4 1 44 44 17 4 3 50 50 18 4 7 67 67 19 4 21 39 39 20 4 NA NA NA 21 5 1 42 58 22 5 3 60 78 23 5 7 86 85 24 5 19 56 60 25 5 35 39 84 26 6 1 57 67 27 6 NA NA NA 28 6 NA NA NA 29 6 NA NA NA 30 6 NA NA NA 31 7 1 71 58 32 7 3 55 67 33 7 10 57 95 34 7 17 62 94 35 7 25 47 73 36 8 1 79 105 37 8 NA NA NA 38 8 NA NA NA 39 8 NA NA NA 40 8 NA NA NA 41 9 1 60 70 42 9 3 64 62 43 9 9 68 65 44 9 NA NA NA 45 9 NA NA NA 46 10 1 47 75 47 10 3 49 73 48 10 9 46 70 49 10 17 48 70 50 10 NA NA NA 51 11 1 57 97 52 11 6 75 108 53 11 NA NA NA 54 11 NA NA NA 55 11 NA NA NA 56 12 1 85 116 57 12 3 77 110 58 12 NA NA NA 59 12 NA NA NA 60 12 NA NA NA 61 13 1 34 51 62 13 NA NA NA 63 13 NA NA NA 64 13 NA NA NA 65 13 NA NA NA 66 14 1 30 59 67 14 3 NA NA 68 14 NA NA NA 69 14 NA NA NA 70 14 NA NA NA 71 15 1 42 47 72 15 3 50 62 73 15 11 33 75 74 15 NA NA NA 75 15 NA NA NA 76 16 1 NA 83 77 16 7 NA 88 78 16 13 NA 74 79 16 NA NA NA 80 16 NA NA NA 81 17 1 NA 51 82 17 7 NA 62 83 17 NA NA NA 84 17 NA NA NA 85 17 NA NA NA 86 18 1 NA 39 87 18 7 NA 44 88 18 NA NA NA 89 18 NA NA NA 90 18 NA NA NA 91 19 1 NA 45 92 19 7 NA 56 93 19 14 NA NA 94 19 NA NA NA 95 19 NA NA NA 96 20 1 NA 45 97 20 7 NA 57 98 20 NA NA NA 99 20 NA NA NA 100 20 NA NA NA 101 21 1 NA 80 102 21 NA NA NA 103 21 NA NA NA 104 21 NA NA NA 105 21 NA NA NA 106 22 1 NA 42 107 22 7 NA 33 108 22 14 NA 36 109 22 21 NA NA 110 22 NA NA NA 111 23 1 NA 69 112 23 7 NA 68 113 23 NA NA NA 114 23 NA NA NA 115 23 NA NA NA 116 24 1 NA 48 117 24 6 NA 58 118 24 14 NA 82 119 24 NA NA NA 120 24 NA NA NA 121 25 1 NA 67 122 25 NA NA NA 123 25 NA NA NA 124 25 NA NA NA 125 25 NA NA NA> > library(nlme) > fitRI <- lme(echogen~time,random=~ 1 |subject,data=repeatdata,na.action=na.omit) > summary(fitRI)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 491.097 499.1984 -241.5485 Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 19.1751 10.44601 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158545 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362748 -0.52710871 0.02948022 0.41793307 1.77340062 Number of Observations: 58 Number of Groups: 25> > fitRT <- lme(echogen~time,random=~ -1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 515.2225 523.3239 -253.6112 Random effects: Formula: ~-1 + time | subject time Residual StdDev: 0.6014915 19.63638 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 65.03691 3.494160 32 18.613032 0.0000 time 0.22688 0.467306 32 0.485503 0.6306 Correlation: (Intr) time -0.625 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -2.35381603 -0.69490411 -0.04299361 0.52973023 2.57509584 Number of Observations: 58 Number of Groups: 25> > fitRIRT <- lme(echogen~time,random=~ > 1+time|subject,data=repeatdata,na.action=na.omit) > summary(fitRIRT)Linear mixed-effects model fit by REML Data: repeatdata AIC BIC logLik 495.097 507.2491 -241.5485 Random effects: Formula: ~1 + time | subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 1.917511e+01 (Intr) time 2.032072e-04 0 Residual 1.044601e+01 Fixed effects: echogen ~ time Value Std.Error DF t-value p-value (Intercept) 64.54864 4.258235 32 15.158543 0.0000 time 0.35795 0.227080 32 1.576307 0.1248 Correlation: (Intr) time -0.242 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.61362755 -0.52710871 0.02948008 0.41793322 1.77340082 Number of Observations: 58 Number of Groups: 25>John David Sorkin M.D., Ph.D. Chief, Biostatistics and Informatics University of Maryland School of Medicine Division of Gerontology Baltimore VA Medical Center 10 North Greene Street GRECC (BT/18/GR) Baltimore, MD 21201-1524 (Phone) 410-605-7119 (Fax) 410-605-7913 (Please call phone number above prior to faxing) Confidentiality Statement: This email message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply email and destroy all copies of the original message. * * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * * Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document. The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document. Confidentiality Statement: This email message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply email and destroy all copies of the original message.