Hi. I would use the function aggregate, but first you will have to tag each
row with a special code so R can recognize the group of data and apply the
function you desire. For example, with your data I would do this:
Date Pm FF LL
KK HH NN Ww DD code
01/01/2012 00:00:00 349 120 10 8 1178
1292 2005 762 01_01_2012_1
01/01/01/2012 00:00:05 356 119 12 7 1167
1289 1992 778 01_01_2012_1
01/01/2012 00:00:10 360 115 15 8 189
1302 2010 770 01_01_2012_1
01/01/2012 00:00:15 349 120 10 8 1178
1292 2005 762 01_01_2012_1
01/01/01/2012 00:00:20 356 119 12 7 1167
1289 1992 778 01_01_2012_2
01/01/2012 00:00:25 360 115 15 8 189
1302 2010 770 01_01_2012_2
01/01/2012 00:00:30 360 115 15 8 189
1302 2010 770 01_01_2012_2
##Then apply the function aggregate
aggregate(name of the variable you want to obtain the mean,
by=list(variable used for grouping),FUN=mean)
For example, if you want to aggregate Pm by groups of 15 min, you write it
like this
aggregate(Pm,by=list(code),FUN=sum)
and you'll obtain the mean of the rows that have the same code . In this
example, you'll obtain the mean of two groups: the Pm measurments wich
their labels are 01_01_2012_1 and 01_01_2012_2.
Hope it works
M.C. Luis Antonio Arias Medell?n
National Institute of Public Health
Cuernavaca, Morelos, Mexico
--
View this message in context:
http://r.789695.n4.nabble.com/Average-for-Huge-file-tp4586926p4587482.html
Sent from the R help mailing list archive at Nabble.com.