Dear all, I have tow (several) bivariate distributions with a known mean and variance-covariance structure (hence a known density function) that I would like to compare in order to get an intersect that tells me something about "how different" these distributions are (as t-statistics for univariate distributions). In order to visualize what I mean hear a little code example: ######################################## library(mvtnorm) c<-data.frame(rnorm(1000,5,sd=1),rnorm(1000,6,sd=1)) c2<-data.frame(rnorm(1000,10,sd=2),rnorm(1000,7,sd=1)) xx=seq(0,20,0.1) yy=seq(0,20,0.1) xmult=cbind(rep(yy,201),rep(xx,each=201)) dens=dmvnorm(xmult,mean(c),cov(c)) dmat=matrix(dens,ncol=length(yy),nrow=length(xx),byrow=F) dens2=dmvnorm(xmult,mean(c2),cov(c2)) dmat2=matrix(dens2,ncol=length(yy),nrow=length(xx),byrow=F) contour(xx,yy,dmat,lwd=2) contour(xx,yy,dmat2,lwd=2,add=T) ############################################## Is their an easy way to do this (maybe with dmvnorm()?) and could I interpret the intersect ("shared volume") in the sense of a t-statistic? Thanks a lot for your help! sincerely, _____________________________________ Fabian Fabian Roger, Ph.D. student Dept of Biological and Environmental Sciences University of Gothenburg Box 461 SE-405 30 G?teborg Sweden Tel. +46 31 786 2933