I am time series data in Eviews to see the fitting of logistic and gompertz model with my data. I used NLS and then the Box cox transformation. I need to see my graph of original data Vs predicted values / fiited values on single graph . I cam do this when dealing only with NLS but I am not able to plot it with box cox. I read about " lines.boxcox.fit " but not working. Please let me know if anyone knows Below is the code. library(nlstools) library(nlme) library(nlrwr) Use <-c(12.6, 15.1, 18.3, 21.99, 26.15, 29.205, 33.6, 37.4, 41.07, 44.94, 50.86, 58.5, 69.2, 78.49, 91.01, 105.4, 120.47, 135.79, 153.99, 172.23, 192.7, 212.51, 233.68, 258.23, 297.26, 328.23, 370.59, 421.58, 478.68, 527.62, 578.49, 641.73, 698.37, 737.33, 761.2 ) time <- c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,242,25,26,27,28,29,30,31,32,33,34) df <- data.frame(Use, time ) df plot(df$time , df$Use, col = "blue", xlab="time((Time t=0 at Year 2003 Q1 (march))",ylab= "Users") win.graph() para0.st <- c(K=1062, a=3.998, b=0.129 ) fitGG <- nls( Use~ K*exp(-a*exp(-b*time )), df, start= para0.st,trace=T, control=nls.control(maxiter=200)) summary(fitGG) // Plotting original Vs NLS fit data on same graph plot(df$time , df$Use, xlim=c(0,40), ylim=c(0,1000), col = "blue", xlab="Time (Year 2003)",ylab= "Use") x <- seq(0, 40, length=100) y2 <- predict(fitGG,data.frame(time =x)) lines(x,y2, lty="dotted", col="red") nlsResiduals(fitGG) resGG<-nlsResiduals(fitGG) plot(resGG,which=0) // now using box cox transformation bcfitGG2<- boxcox.nls(fitGG) bcSummary(bcfitGG2) coef(summary(bcfitGG2)) summary(bcfitGG2) resGG1<-nlsResiduals(bcfitGG2) plot(resGG1,which=0) /// trying to plot for the original Vs fitted box-cox values plot(df$time , df$Use, xlim=c(0,40), ylim=c(0,1000), col = "blue", xlab="Time (Year)",ylab= "Use") x <- seq(0, 40, length=100) y3 <- predict(bcfitGG2,data.frame(time =x)) lines(x,y3, lty="dotted", col="red") -- View this message in context: http://r.789695.n4.nabble.com/Boxcox-transformation-tp4554769p4554769.html Sent from the R help mailing list archive at Nabble.com.