Hi there, I have this code: Prepared_Data <- na.omit(read.csv("Prepared_Data.csv", header=TRUE)) pd <- Prepared_Data[,-3] ## data minus response variable ## how many levels per variable? lev <- sapply(pd,function(x) length(unique(x))) ## total parameters for n variables par(las=1,bty="l") plot(cumprod(lev),log="y") library(Matrix) m <- sparse.model.matrix(~.^2,data=pd) ## slower than model.matrix ncol(m) ##8352 columns (!!) library(glmnet) g1 <- glmnet(m,Prepared_Data$C3, family="binomial") Coef(g1) Which prints out the coefficients of g1. However there are very few numerical coefficients, and many dots. Is there any way to get numerical values for all factors/terms, making it a more complete model without lots of gaps? Kind regards, A Sent from my BlackBerry smartphone from Virgin Media