Dear community, I'm trying to model growth with this function: Yi = A* exp(-k*(1/ti^m)) ; A asymptote, k rate of decrease of the relative growth rate, m shape parameter. I don't have variable time so, finally, following some papers, I try to fit Yi+a = A*exp(-k* (1/(-k/(log(Yi/A)))^(1/m)+a)^m); a= 10 I've tried: a) nls.1 <- nls(Yi+a ~A*exp(-k* (1/(-k/(log(Yi/A)))^(1/m)+10)^m), data=pgm, start= list(A=30.3656 , k= 3271.703374, m= -1.870935)) ; start values obtained: A from data, k & m substituting. But I obtain this error: /Error en numericDeriv(form[[3L]], names(ind), env) : Missing value or an infinity produced when evaluating the model / b) est.o4 <- optim( c(30.3656, 2.841345, 3270.109), funcL, method="SANN", hessian=TRUE, yr= data$Yia, x=data$Yi) where funcL <- function( par, yr, x ) { A = par[1] m = par[2] k = par[3] y <- A*exp(-k* (1/(-k/(log(x/A)))^(1/m)+a)^m) sum((yr-y)^2) } Output is as follows: /$par [1] 46.9067228 -0.7824855 16.5397317 $value [1] 977.2446 $counts function gradient 10000 NA $convergence [1] 0 $message NULL $hessian [,1] [,2] [,3] [1,] 13.87311 -1583.814 -20.82244 [2,] -1583.81444 190698.126 2526.48636 [3,] -20.82244 2526.486 33.81710/ /> eigen(round(est.o4$hessian,4), symmetric= TRUE)$values [1] 1.907448e+05 7.786493e-01 2.848952e-01/ I've read here many entries with nls problems, but I'm new with nls and I don't understand. Why nls fails with my function? Is it nls or my function? On the other hand is there any SelfStart function where I can find initial values for A, k, m parameters? This is the data I'm dealing with: http://r.789695.n4.nabble.com/file/n4257580/data data Excel Format: http://r.789695.n4.nabble.com/file/n4257580/data.xls data.xls Any help would be much appreciated, user at host.com -- View this message in context: http://r.789695.n4.nabble.com/optim-Self-Start-values-growth-function-tp4257580p4257580.html Sent from the R help mailing list archive at Nabble.com.