Hi, I'm trying to select the best model for a particular problem. So far i have managed to identify a set of variables that woudl explain my model lm1 <- lm(Group ~ . , data=dataf)) > summary(lm1) Df Sum Sq Mean Sq F value Pr(>F) `A` 1 2.3963 2.3963 24.0390 7.328e-06 *** `B` 1 0.7145 0.7145 7.1672 0.009525 ** `C` 1 0.6916 0.6916 6.9379 0.010680 * `D` 1 5.7042 5.7042 57.2223 2.473e-10 *** `E` 1 0.8928 0.8928 8.9563 0.003988 ** `F` 1 0.0036 0.0036 0.0359 0.850301 `G` 1 0.3817 0.3817 3.8295 0.054939 . `H` 1 0.0581 0.0581 0.5833 0.447962 `I` 1 0.1371 0.1371 1.3756 0.245408 `J` 1 0.0504 0.0504 0.5052 0.479936 Residuals 61 6.0808 0.0997 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 I would like to run a stepwise analysis with the significant variables from the previous lm. Can i input a filter to the stepAIC so that only significant variables are used as the initial model to start step analysis for ? stepAIC(lm1,direction="both",) # How do i filter so that the initial model start with the significant ones from lm testing. thanks,