Newbie
2011-Aug-24 16:23 UTC
[R] nlminb - how to avoid evaluating initial parameters infinite in integrate
Dear R-users. I am faced with a problem I dont know how to solve. I need to calibrate the Heston stochastic volatility model, and have (to my own belief) created a code for calculating the prices of options by this model. However, when I calibrate the model using NLMINB I also evaluate my initial parameters to infinity by the integrate function, and this is wrong! I believe that this is the reason why nlminb keeps spitting out the initial parameters as the estimates. For 0 the values of C and D, see below, should be 0, so that the phi is equal to 1 (which makes the parameters NOT being evaluated by infinity). It is a bit difficult to explain, and I hope you can understand what I want to do. Is it possible to incorporate a statement in the integrate() saying that at 0 the conditions are different? Or should this be done in some sort of loop? Please help me. Also, I am very sorry that this message is a "repost" on my part. In my original message the problem was a wrong use of nlminb. I hope that this new header will make it easier for people who have knowledge in this field to find my post. I have searched, but have not found a way to solve this problem - I hope you are able to help me. (the problem is in the integrate in the Price_call function where integrand refers to the phi function) THANK you Rikke my code is: setwd("F:/Data til speciale/") ############## Calibration of Heston model parameters marketdata <- read.csv(file="S&P 500 calls, jan-jun 2010.csv", header=TRUE, sep=";") BS_Call <- function(S0, K, T, r, sigma, q) { sig <- sigma * sqrt(T) d1 <- (log (S0*exp((r-q)*T)/K) + (sigma^2/2) * T ) / sig d2 <- d1 - sig Presentvalue <- exp(-r*T) return (Presentvalue*(S0 * exp((r-q)*T) * pnorm(d1) - K*pnorm(d2))) } #------------------------- Values ---------------------------------- #### Data imported S0 <- 1136.03 X <- marketdata[1:460,9] t <- marketdata[1:460,17]/365 #Notice the T is measured in years now implvol <- marketdata[1:460,12] ###### Initial values kappa <- 0.0663227 # Lambda = -kappa rho <- -0.6678461 eta <- 0.002124704 theta <- 0.0001421415 v0 <- 0.0001421415 q <- 0.02145608 r <- 0.01268737 smallk <- log(X/(S0*exp(r-q)*t)) parameters0 <- c(kappa, rho, eta, theta, v0) #----------------------------------------------------------------------------- #### The price of a Call option (Eq. (5.6) of The Volatility Surface, Gatheral) # In terms of log moneyness Price_call <- function(phi, smallk, t) { integrand <- function(u) {Re(exp(-1i*u*smallk)*phi(u - 1i/2, t)/(u^2 + 1/4))} res <- S0*exp(-q*t) - exp(smallk/2)/pi*integrate(Vectorize(integrand),lower=0,upper=Inf, subdivisions=460)$value return(res) } # The characteric formula for the Heston model (Eq. XX) phiHeston <- function(parameters) { lambda <- - kappa function(u, t) { alpha <- -u*u/2 - 1i*u/2 beta <- lambda - rho*eta*1i*u gamma <- eta^2/2 d <- sqrt(beta*beta - 4*alpha*gamma) rplus <- (beta + d)/(eta^2) rminus <- (beta - d)/(eta^2) g <- rminus / rplus D <- rminus * (1 - exp(-d*t))/ (1 - g*exp(-d*t)) C <- lambda* (rminus * t - 2/eta^2 * log( (1 - g*exp(-(d*t)))/(1 - g)) ) return(exp(C*theta + D*v0)) } } ## Calculating the Heston model price with fourier HestonCall<-function(smallk, t) { res<-Price_call(phiHeston(parameters),smallk,t) return(res) } ##### Vectorizing the function to handle vectors of strikes and maturities HestonCallVec <- function(smallk,t) { mapply (HestonCall, smallk, t) } lb <- c(0, -1, 0, 0, 0) ub <- c(Inf, 1, Inf, Inf, 2) difference <- function(smallk, t, S0, r, implvol, q, parameters) { return(HestonCallVec(smallk,t) - BS_Call(S0, exp(smallk), t, r, implvol, q)) } y <- function(x) {kappa<-x[1]; rho<-x[2]; eta<- x[3]; theta<- x[4]; v0<-x[5]; sum(difference(smallk, t, S0, r, implvol, q, x)^2/BS_Call(S0, exp(smallk), t, r, implvol, q))} nlminb(start=parameters0, objective = y, lower =lb, upper =ub) http://r.789695.n4.nabble.com/file/n3765932/S%26P_500_calls%2C_jan-jun_2010.csv S%26P_500_calls%2C_jan-jun_2010.csv -- View this message in context: http://r.789695.n4.nabble.com/nlminb-how-to-avoid-evaluating-initial-parameters-infinite-in-integrate-tp3765932p3765932.html Sent from the R help mailing list archive at Nabble.com.