I've read something about this problem, but I don't know how can i avoid
this
problem.
Why the order of the factors give different results? I suppose it's because
the order of the factors, i've just changed "lcc" from the first
position to
the last in the model, and the significance change completely
> modo<-glm(prevalencia~*lcc*+edadysexo/lcc+edadysexo/mes,binomial)
> anova(modo,test="Chisq")
Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 524 206.97
lcc 1 10.5715 523 196.40 0.001148 **
edadysexo 2 1.0725 521 195.32 0.584929
lcc:edadysexo 2 3.7752 519 191.55 0.151433
edadysexo:mes 9 18.2981 510 173.25 0.031868 *
> mode<-glm(prevalencia~edadysexo/lcc+edadysexo/mes+*lcc*,binomial)
> anova(mode,test="Chisq")
Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 524 206.97
edadysexo 2 9.9165 522 197.05 0.007025 **
lcc 1 1.7275 521 195.32 0.188732
edadysexo:lcc 2 3.7752 519 191.55 0.151433
edadysexo:mes 9 18.2981 510 173.25 0.031868 *
Ijow can i know what's correct? when i test this two factors separately in a
lm (lcc is continuos) and in a chisq.test (edadysexo is categorical) both
are significant, and in the model just one of them is significant.
Thanks very much
-----
Mario Garrido Escudero
PhD student
Dpto. de Biolog?a Animal, Ecolog?a, Parasitolog?a, Edafolog?a y Qca. Agr?cola
Universidad de Salamanca
--
View this message in context:
http://r.789695.n4.nabble.com/GLM-different-results-with-the-same-factors-tp3690471p3690471.html
Sent from the R help mailing list archive at Nabble.com.