Hi folks, I'm forwarding this to the list as my email to nita was about getting her code to the list. Additionally, I'm running Linux and have no experience with WinBUGS. Jim -------- Original Message -------- Subject: Re: [R] Help with winbugs code Date: Thu, 23 Jun 2011 16:49:33 +0700 From: nita yalina <tayalin at gmail.com> To: Jim Lemon <jim at bitwrit.com.au> Thanks to reply my message....i really appreciate that..here is my code: i also attach a text file. in that code I initial varible "y" in the initial part, but it make winbugs open a new window "undefine real result" but when I delete variable "y" in the initial part it said that there some variable that has to be initialized. what should i do? ...very grateful for your help... model{ for(i in 1:N){ #model persamaan pengukuran for(j in 1:P){ y[i,j]~dnorm(mu[i,j],psi [j]) I(thd [j,z[i,j]],thd[j,z[i,j]+1]) ephat[i,j]<-y[i,j] -mu[i,j] } #faktor Budaya Organisasi mu[i,1]<-xi[i,1] mu[i,2]<-lam[1]*xi[i,1] mu[i,3]<-lam[2]*xi[i,1] #faktor Kemampuan Pengguna mu[i,4]<-xi[i,2] mu[i,5]<-lam[3]*xi[i,2] mu[i,6]<-lam[4]*xi[i,2] #faktor Mekanisme Dukungan mu[i,7]<-xi[i,3] mu[i,8]<-lam[5]*xi[i,3] mu[i,9]<-lam[6]*xi[i,3] #faktor Desain Antarmuka mu[i,10]<-xi[i,4] mu[i,11]<-lam[7]*xi[i,4] mu[i,12]<-lam[8]*xi[i,4] #faktor Persepsi Kualitas mu[i,13]<-xi[i,5] mu[i,14]<-lam[9]*xi[i,5] mu[i,15]<-lam[10]*xi[i,5] #faktor Persepsi Kemudahan Kegunaan mu[i,16]<-eta[i,1] mu[i,17]<-lam[11]*eta[i,1] mu[i,18]<-lam[12]*eta[i,1] #faktor Persepsi Kegunaan mu[i,19]<-eta[i,2] mu[i,20]<-lam[13]*eta[i,2] mu[i,21]<-lam[14]*eta[i,2] mu[i,22]<-lam[15]*eta[i,2] #faktor Sikap ke arah Penggunaan mu[i,23]<-eta[i,3] mu[i,24]<-lam[16]*eta[i,3] mu[i,25]<-lam[17]*eta[i,3] #faktor Persepsi Niat untuk Menggunakan mu[i,26]<-eta[i,4] mu[i,27]<-lam[18]*eta[i,4] mu[i,28]<-lam[19]*eta[i,4] #faktor Adopsi E-government mu[i,29]<-eta[i,5] mu[i,30]<-lam[20]*eta[i,5] #model persamaan struktural xi[i,1:5] ~dmnorm(u[1:5],phi[1:5,1:5]) eta[i,1]~dnorm(nu[i,1],pskp) nu[i,1]<-gam[1]*xi[i,2]+gam[2]*xi[i,3]+gam[3]*xi[i,4] dthat[i,1]<-eta[i,1]-nu[i,1] eta[i,2]~dnorm(nu[i,2],pspk) nu[i,2]<-gam[4]*xi[i,1]+beta[1]*eta[i,1] dthat[i,2]<-eta[i,2]-nu[i,2] eta[i,3]~dnorm(nu[i,3],pssp) nu[i,3]<-beta[2]*eta[i,2]+beta[3]*eta[i,3] dthat[i,3]<-eta[i,3]-nu[i,3] eta[i,4]~dnorm(nu[i,4],psnm) nu[i,4]<-beta[4]*eta[i,1]+beta[5]*eta[i,2]+gam[5]*xi[i,5] dthat[i,4]<-eta[i,4]-nu[i,4] eta[i,5]~dnorm(nu[i,5],psae) nu[i,5]<-beta[6]*eta[i,4] dthat[i,5]<-eta[i,5]-nu[i,5] }#akhir dari i for (i in 1:5) {u[i]<-0.0} #lamda var.lam[1]<-8.0*psi[2] var.lam[2]<-8.0*psi[3] var.lam[3]<-8.0*psi[5] var.lam[4]<-8.0*psi[6] var.lam[5]<-8.0*psi[8] var.lam[6]<-8.0*psi[9] var.lam[7]<-8.0*psi[11] var.lam[8]<-8.0*psi[12] var.lam[9]<-8.0*psi[14] var.lam[10]<-8.0*psi[15] var.lam[11]<-8.0*psi[17] var.lam[12]<-8.0*psi[18] var.lam[13]<-8.0*psi[20] var.lam[14]<-8.0*psi[21] var.lam[15]<-8.0*psi[22] var.lam[16]<-8.0*psi[24] var.lam[17]<-8.0*psi[25] var.lam[18]<-8.0*psi[27] var.lam[19]<-8.0*psi[28] var.lam[20]<-8.0*psi[30] for (i in 1:20) {lam[i] ~dnorm(1,var.lam[i])} for (j in 1:P) { psi[j] ~dgamma(10,8) sgl[j]<-1/psi[j] } #gamma gam[1]~dnorm(0.4,var.pk <http://var.pk>) gam[2]~dnorm(0.5,var.kp <http://var.kp>) gam[3]~dnorm(0.4,var.kp <http://var.kp>) gam[4]~dnorm(0.6,var.kp <http://var.kp>) gam[5]~dnorm(0.1,var.nm) var.pk <http://var.pk> <-8.0*pspk pspk~dgamma(10,8) sgpk<-1/pspk var.kp <http://var.kp> <-8.0*pskp pskp~dgamma(10,8) sgkp<-1/pskp var.sp <-8.0*pssp pssp~dgamma(10,8) sgsp<-1/pssp var.nm <-8.0*psnm psnm~dgamma(10,8) sgnm<-1/psnm var.ae <http://var.ae> <-8.0*psae psae~dgamma(10,8) sgae<-1/psae #beta beta[1] ~dnorm(0.4,var.pk <http://var.pk>) beta[2] ~dnorm(0.5,var.sp) beta[3] ~dnorm(0.6,var.sp) beta[4] ~dnorm(0.6,var.nm) beta[5] ~dnorm(0.5,var.nm) beta[6] ~dnorm(0.4,var.ae <http://var.ae>) phi[1:5,1:5] ~dwish(R[1:5,1:5],30) phx[1:5,1:5]<-inverse(phi[1:5,1:5]) } #end of model DATA list(N=43, P=30, R=structure( .Data=c(10,0,0,0,0, 0,10,0,0,0, 0,0,10,0,0, 0,0,0,10,0, 0,0,0,0,10 ), .Dim=c(5,5)), thd=structure( .Data=c(-250,-1.99072046156042,-1.08241139430414,0.983052916910141,250,-250,-200,-1.47752529199845,0.452147411138078,250,-250,-200,-1.08241139430414,0.730448177619092,250,-250,-1.99072046156042,-0.585607161227169,1.08241139430414,250,-250,-1.99072046156042,-0.265404753825216,1.08241139430414,250,-250,-200,-0.656304990872144,0.892559673266593,250,-250,-200,-1.08241139430414,0.517723552818072,250,-250,-1.99072046156042,-1.47752529199845,0.585607161227169,250,-250,-200,-1.99072046156042,0.265404753825216,250,-250,-200,-1.67966118528897,0.656304990872144,250,-250,-1.99072046156042,-1.67966118528897,0.517723552818072,250,-250,-1.67966118528897,-0.892559673266593,0.730448177619092,250,-250,-200,-1.08241139430414,0.80884440410662,250,-250,-200,-1.67966118528897,0.730448177619092,250,-250,-1.67966118528897,-1.19379507272265,0.80884440410662,250,-250,-200,-1.32236537894944,0.98305291691014,250,-250,-200,-0.656304990872144,1.08241139430414,250,-250,-1.99072046156042,-1.32236537894944,0 .585607161227169,250,-250,-200,-1.19379507272265,0.656304990872144,250,-250,-1.99072046156042,-1.67966118528897,0.80884440410662,250,-250,-1.99072046156042,-1.19379507272265,0.656304990872144,250,-250,-1.67966118528897,-1.19379507272265,0.452147411138078,250,-250,-200,-1.47752529199845,0.656304990872144,250,-250,-1.99072046156042,-1.47752529199845,0.585607161227169,250,-250,-200,-1.19379507272265,0.730448177619092,250,-250,-1.67966118528897,-0.80884440410662,0.892559673266593,250,-250,-1.99072046156042,-1.67966118528897,0.585607161227169,250,-250,-200,-0.983052916910141,0.80884440410662,250,-250,-200,-1.67966118528897,0.585607161227169,250,-250,-1.99072046156042,-1.08241139430414,0.892559673266593,250), .Dim=c(30,5)), z=structure( .Data=c(3,3,2,3,2,2,4,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,2,2,3,3,3,3,3,2,3,3,3,3,2,3,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,3,3,3,3,3,2,3,4,2,4,4,4,4,3,3,3,3,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,2,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3,3,3,3,3,3,3,3,2,2,2,3,3,3,3,3,4,3,2,3,3,3,3,4,3,2,4,3,3,3,3,3,3,3,3,3,2,3,2,2,2,2,3,3,4,3,3,2,3,3,3,3,2,4,3,3,4,4,3,3,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,2,3,4,4,2,2,3,3,4,4,4,4,3,3,3,3,3,4,3,3,3,3,3,4,4,4,3,4,4,4,4,3,3,3,3,3,3,4,3,3,3,3,2,3,3,1,4,4,4,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,2,4,3,2,2,2,2,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,3,3,3,4,4,4,4,3,3,2,4,3,3,3,2,3,4,2,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,3,3,3,3,2,4,4,4,3,3,3,3,3,3,3,3,4,4,3,3,3,3,4,3,1,4,3,4,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,2,3,3,3,3,3,2,3,2,3,2,3,4,3,3,3,3,3,4,4,3,3,3,3,3,3,3,3,3,3,3,4,3,3,3,4,3,3,4,3,3,3,3,3,3,2,2,3,3,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,3,4,4,3,4,4,4,4,3,3,3,3,3,3,3,3,3,4,4,3,3,3,3,3,3,3,3,3,2,3,4,3,2,3,1,3,3,3,3,2,2,2,3,3,2,3,2,2,2,4,4,4,2,3,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,3,3,2,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,3,3,2,2,1,1,2,2,2,2,2,1,1,2,2,2,1,1,1,2,2,2,2,2,2,2,2,2,3,2,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,3,3,4,4,3,3,4,4,4,3,3,3,4,4,4,3,3,4,4,4,4,4,4,4,4,4,4,3,3,3,2,2,3,4,4,4,3,3,3,4,4,4,3,3,4,3,3,3,3,3,3,3,3, 4,3,4,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,3,3,3,3,3,3,4,3,3,3,4,4,4,3,4,3,3,3,3,4,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,4,3,2,3,4,2,3,4,3,2,1,3,4,1,3,2,1,3,2,1,2,2,1,2,2,1,2,3,4,2,2,3,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3,2,3,4,4,4,4,4,4,3,3,4,4,4,4,3,3,4,4,4,4,3,3,4,3,4,3 ), .Dim=c(43,30))) ) INITS list( lam=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), psi=c(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0), pspk=1.0, pskp=1.0, pssp=1.0, psnm=1.0, psae=1.0, gam=c(0,0,0,0,0), beta=c(0,0,0,0,0,0), phi=structure(.Data=c(1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ),.Dim=c(5,5)), xi=structure(.Data=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), .Dim=c(43,5)), eta=structure(.Data=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), .Dim=c(43,5)), y=structure( .Data=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ), .Dim=c(43,30)) ) On Thu, Jun 23, 2011 at 4:36 PM, Jim Lemon <jim at bitwrit.com.au <mailto:jim at bitwrit.com.au>> wrote: On 06/22/2011 05:29 PM, nita yalina wrote: Good afternoon sir, i'm a student in Indonesia who study technology management, i need to review the software i'v been develop, i was told to use bayesian SEM because i don't have large sample. i don't know much about statistics but i try to make a code via winbugs.. and a i got a problem. here i attach my winbugs code and my model. could you hep me to find what's wrong with my code? thank you very much for your answer Hi nita, Your code didn't make it to the list. If it is plain text, just paste it into the message, but I suspect that you tried to send a Word document or something like that. If so, copy and paste the contents of whatever it was into Notepad, then save that as a .txt file and it should get through the filters. Jim -------------- next part -------------- An embedded and charset-unspecified text was scrubbed... Name: semmodel.txt URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20110623/e6579fb9/attachment.txt>