Stratford, Jeffrey
2011-Apr-17 14:51 UTC
[R] side by side histogram after splitting data by year
Hi everyone, I'm looking to produce a side-by-side histogram of the number of trips taken by jays with a particular number of acorns after accounting for year (year "one" and year "two"). I know this involves indexing first then creating a histogram but I'm not sure how I'd do this. I want to explore the possibilities that jays are altering their strategies in different years. Data are below. This is a common need for myself so any help would be greatly appreciated! Thanks, Jeff structure(list(year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("one", "two"), class = "factor"), size = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("large", "small"), class = "factor"), distance = c(30.8735, 121.505, 46.055, 46.055, 46.055, 9.343, 46.055, 46.055, 46.055, 85.271, 85.271, 85.271, 85.271, 85.271, 85.271, 30.8735, 30.8735, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 152.717, 152.717, 152.717, 152.717, 152.717, 152.717, 152.717, 46.055, 46.055, 152.717, 152.717, 20.698, 20.698, 17.217, 17.217, 9.343, 9.343, 17.217, 46.055, 152.717, 46.055, 17.217, 152.717, 17.217, 17.217, 46.055, 30.8735, 30.8735, 30.8735, 5.69, 30.8735, 17.217, 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 9.343, 9.343, 17.217, 17.217, 17.217, 17.217, 17.217, 17.217, 9.343, 9.343, 17.217, 17.217, 17.217, 20.698, 17.217, 17.217, 17.217, 5.42, 17.217, 17.217, 17.217, 9.343, 30.8735, 30.8735, 30.8735, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 17.217, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 30.8735, 30.8735, 17.217, 17.217, 46.055, 36.239, 17.217, 17.217, 17.217, 46.055, 30.8735, 30.8735, 17.217, 17.217, 17.217, 121.505, 152.717, 152.717, 17.217, 152.717, 121.505, 121.505, 121.505, 121.505, 121.505, 9.343, 121.505, 9.343, 121.505, 121.505, 30.8735, 121.505, 17.217, 17.217, 17.217, 9.343, 30.8735, 85.271, 85.271, 85.271, 85.271, 85.271, 85.271, 9.343, 85.271, 85.271, 85.271, 85.271, 20.698, 9.343, 30.8735, 17.217, 20.698, 30.8735, 17.217, 85.271, 121.505, 121.505, 85.271, 85.271, 85.271, 85.271, 121.505, 121.505, NA, 121.505, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 30.8735, 17.217, 9.343, 9.343, 9.343, 30.8735, 30.8735, 30.8735, 9.343, 9.343, 30.8735, 17.217, 5.42, 17.217, 85.271, 85.271, 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 17.217, 85.271, 17.217, 30.8735, 30.8735, 85.271, 30.8735, 30.8735, 85.271, 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 17.217, 30.8735, 9.343, 30.8735, 30.8735, 30.8735, 30.8735, 9.343, 30.8735, 30.8735, 17.217, 9.343, 9.343, 9.343, 85.271, 30.8735, 30.8735, 46.055, 5.69, 85.271, 85.271, 17.217, 46.055, 85.271, 30.8735, 85.271, 46.055, 121.505, 121.505, 121.505, 17.217, 17.217, 25.508, 9.343, 17.217, 17.217, 9.343, 17.217, 9.343, 17.217, 34.35, 34.35, 46.055, 46.055, 9.343, 20.698, 17.217, 27.25, 20.54, 27.25, 20.698, 17.217, 20.698, 20.698, 15, 15, 8.35, 13.63, 20.34, 17.217, 5.69, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 30, 17.217, 5, 5, 5, 7.93, 7.93, 7.93, 5, 7.71, 5, 17.217, 8.175, 8.175, 6.69, 6.69, 6.69, 10.875, 5.345, 5.345, 5.345, 5.345, 3.54, 10.755, 10.755, 10.755, 19.61, 20.145, 20.145, 20.145, 10.34, 5.35, 6.34, 10.34, 5.35, 10.34, 9.343, 9.343, 9.343, 9.343, 137.111, 17.217, 137.111, 17.217, 137.111, 137.111, 17.217, 46.055, 46.055, 17.217, 17.77, 20.54, 17.217, 17.217, 20.54, 11.75, 11.75, 17.217, 56.89, 20.54, 20.54, 55, 75, 75, 75, 19.61, 19.61, 19.61, 19.61, 19.61, 25.508, 20.698, 5.42, 5.42, 19.61, 19.61, 19.61, 20.698, 5.42, 25.508, 5.42, 17.217, 16.92, 9.343, 9.343, 19.61, 9.343, 19.61, 19.61, 16.92, 16.92, 16.92, 5.42, 5.42, 19.61, 5.42, 9.343, 19.61, 5.42, 5.42, 19.61, 9.343, 46.055, 17.217, 5.42, 19.61, 5.69, 19.61, 17.217, 9.343, 5.42, 19.61, 19.61, 17.217, 35.508, 5.42, 5.42, 5.42, 19.61, 17.217, 5.69, 19.61, 19.61, 8.35, 17.217, 5.69, 19.61, 5.69, 5.69, 17.217, 19.61, 16.92, 19.61, 17.217, 9.343, 5.42, 17.217, 17.217, 9.343, 33.456, 17.217, 46.055, 137.11, 56.89, 54.25, 17.217, 56.89, 55, 17.217, 46.055, 20.698, 46.055, 54.25, 27.25, 53.5, 5.69, 53.5, 20.698, 20.698, 5.69, 17.217, 17.217, 17.217, 17.217, 17.217, 5.69, 17.217, 17.217, 17.217, 11.75, 17.217, 5.69, 11.75, 11.75, 5.42, 5.42, 17.217, 5.69, 20.54, 11.75, 5.69, 11.75, 17.217, 121.505, 121.505, 121.505, 11.75, 5.69, 11.75, 11.75, 20.698, 121.505, 17.217, 11.75, 17.217, 5.42, 17.217, 17.217, 5.42, 5.69, 121.505, 17.217, 5.42, 46.055, 5.69, 20.698, 46.055, 15.86, 15.86, 5.69, 5.69, 11.75, 5.42, 46.055, 5.42, 10.349, 121.505, 15.86, 25.508, 17.217, 17.217, 11.75, 17.217, 17.217, 17.217, 17.217, 17.217, 17.217, 46.055, 17.217, 17.217, 17.217, 17.217, 17.217, 5.42, 17.217, 17.217, 17.217, 9.343, 85.271, 46.055, 17.217, 17.217, 46.055, 25.508, 25.508, 25.508, 20.698, 19.61, 11.75, 11.75, 11.75, 20.698, 11.75, 11.75, 20.45, 11.75, 20.45, 20.45, 7.5, 11.75, 11.75, 20.45), taken = c(10L, 2L, 12L, 1L, 4L, 1L, 10L, 3L, 5L, 5L, 1L, 5L, 3L, 3L, 5L, 2L, 4L, 2L, 1L, 4L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 3L, 2L, 2L, 1L, 4L, 1L, 5L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 1L, 4L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 4L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 3L, 2L, 1L, 1L, 5L, 1L, 1L, 5L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 1L, 2L, 2L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 4L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 3L, 2L, 2L, 4L, 1L, 2L, 4L, 3L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 1L, 2L), mass = c(13.8758, 2.77516, 16.65096, 1.38758, 5.55032, 1.38758, 13.8758, 4.16274, 6.9379, 6.9379, 1.38758, 6.9379, 4.16274, 4.16274, 6.9379, 2.77516, 5.55032, 2.77516, 1.38758, 5.55032, 1.38758, 1.38758, 2.77516, 1.38758, 4.16274, 1.38758, 4.16274, 2.77516, 4.16274, 2.77516, 2.77516, 1.38758, 5.55032, 1.38758, 6.9379, 2.77516, 2.77516, 5.49268, 5.49268, 5.49268, 2.74634, 2.74634, 2.74634, 2.74634, 2.74634, 2.74634, 8.23902, 1.295, 3.885, 2.59, 2.59, 3.885, 2.59, 3.885, 1.295, 2.59, 3.885, 2.59, 2.59, 2.59, 1.295, 2.59, 2.59, 2.59, 1.295, 1.295, 1.295, 1.295, 1.295, 1.295, 2.59, 3.885, 2.59, 1.295, 5.18, 2.59, 3.885, 2.59, 1.295, 2.59, 1.295, 1.295, 1.295, 2.59, 2.59, 2.59, 2.59, 1.295, 2.59, 2.59, 2.59, 1.295, 2.59, 3.885, 1.295, 1.295, 1.295, 3.885, 1.295, 1.295, 1.295, 1.295, 1.295, 3.885, 5.18, 2.59, 1.295, 1.4429, 2.8858, 1.4429, 1.4429, 2.8858, 1.4429, 1.4429, 2.8858, 4.3287, 2.8858, 1.4429, 1.4429, 7.2145, 1.4429, 1.4429, 7.2145, 1.4429, 1.4429, 1.4429, 1.4429, 1.4429, 2.8858, 4.3287, 1.4429, 1.4429, 1.4429, 4.3287, 1.4429, 2.8858, 2.8858, 2.8858, 1.4429, 2.877, 2.877, 2.877, 2.877, 5.754, 2.877, 2.877, 2.877, 2.877, 2.877, 2.877, 8.631, 2.877, 2.877, 5.754, 2.877, 2.877, 2.877, 2.877, 5.754, 2.877, 2.877, 2.877, 2.877, 5.754, 5.754, 2.877, 2.877, 2.877, 2.877, 2.877, 2.877, 1.3719, 1.3719, 1.3719, 1.3719, 1.3719, 2.7438, 1.3719, 2.7438, 1.3719, 1.3719, 2.7438, 2.7438, 1.3719, 1.3719, 1.3719, 1.3719, 2.7438, 1.3719, 1.3719, 2.7438, 1.3719, 2.7438, 1.3719, 1.3719, 1.3719, 1.3719, 1.3719, 4.1157, 1.3719, 1.3719, 1.3719, 1.3719, 4.1157, 1.3719, 1.3719, 1.3719, 2.7438, 1.3719, 2.7438, 4.1157, 1.3719, 2.7438, 1.3719, 2.7438, 2.7438, 2.7438, 2.7438, 2.7438, 1.3719, 1.3719, 2.7438, 2.7438, 1.3719, 1.3719, 1.3719, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 1.17028, 2.34056, 1.17028, 1.17028, 1.17028, 1.17028, 1.17028, 1.17028, 2.34056, 2.34056, 3.51084, 2.34056, 1.17028, 2.34056, 2.34056, 2.34056, 1.17028, 3.51084, 2.34056, 2.34056, 3.51084, 3.51084, 2.34056, 1.17028, 2.03456, 4.06912, 2.03456, 2.03456, 2.03456, 4.06912, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 4.06912, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 1.189102041, 1.189102041, 1.189102041, 2.378204082, 3.567306123, 2.378204082, 4.756408164, 2.378204082, 2.378204082, 2.378204082, 1.189102041, 1.189102041, 1.189102041, 1.189102041, 2.378204082, 1.189102041, 2.378204082, 1.189102041, 3.567306123, 3.567306123, 2.378204082, 2.378204082, 4.756408164, 1.189102041, 2.378204082, 4.756408164, 3.567306123, 3.567306123, 4.756408164, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 7.35696, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.64516, 1.76344, 1.76344, 1.76344, 2.64516, 2.64516, 1.76344, 1.76344, 1.76344, 2.64516, 1.76344, 1.76344, 1.76344, 1.76344, 1.76344, 1.76344, 2.64516, 2.64516, 0.88172, 0.88172, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 4.93064, 4.93064, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 4.56893878, 4.568938778, 6.853408167, 4.56893878, 6.85340817, 4.56893878, 6.85340817, 2.28446939, 4.56893878, 4.568938778, 2.284469389, 4.56893878, 6.85340817, 4.56893878, 4.56893878, 6.85340817, 4.56893878, 2.28446939, 4.56893878, 2.28446939, 4.56893878 )), .Names = c("year", "size", "distance", "taken", "mass"), class = "data.frame", row.names = c(NA, -550L)) ***************************************** Jeffrey A. Stratford, Ph.D. Department of Health and Biological Sciences 84 W. South St. Wilkes Univertsity, PA 18766 570-332-2942 http://web.wilkes.edu/jeffrey.stratford/ ***************************************** [[alternative HTML version deleted]]
Will one of these do it for you:> str(x)'data.frame': 550 obs. of 5 variables: $ year : Factor w/ 2 levels "one","two": 1 1 1 1 1 1 1 1 1 1 ... $ size : Factor w/ 2 levels "large","small": 2 2 2 2 2 2 2 2 2 2 ... $ distance: num 30.9 121.5 46.1 46.1 46.1 ... $ taken : int 10 2 12 1 4 1 10 3 5 5 ... $ mass : num 13.88 2.78 16.65 1.39 5.55 ...> require(lattice) > histogram(~taken|year, x) > histogram(~taken|year*size, x) >On Sun, Apr 17, 2011 at 10:51 AM, Stratford, Jeffrey <jeffrey.stratford at wilkes.edu> wrote:> Hi everyone, > > > > I'm looking to produce a side-by-side histogram of the number of trips > taken by jays with a particular number of acorns after accounting for > year (year "one" and year "two"). I know this involves indexing first > then creating a histogram but I'm not sure how I'd do this. I want to > explore the possibilities that jays are altering their strategies in > different years. ?Data are below. > > > > This is a common need for myself so any help would be greatly > appreciated! > > > > Thanks, > > > > Jeff > > > > > > > > structure(list(year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L), .Label = c("one", "two"), class = "factor"), size = structure(c(2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("large", "small"), class > = "factor"), distance = c(30.8735, 121.505, 46.055, 46.055, 46.055, > 9.343, 46.055, 46.055, 46.055, 85.271, 85.271, 85.271, 85.271, 85.271, > 85.271, 30.8735, 30.8735, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, > 9.343, 152.717, 152.717, 152.717, 152.717, 152.717, 152.717, 152.717, > 46.055, 46.055, 152.717, 152.717, 20.698, 20.698, 17.217, 17.217, 9.343, > 9.343, 17.217, 46.055, 152.717, 46.055, 17.217, 152.717, 17.217, 17.217, > 46.055, 30.8735, 30.8735, 30.8735, 5.69, 30.8735, 17.217, 30.8735, > 30.8735, 30.8735, 30.8735, 30.8735, 9.343, 9.343, 17.217, 17.217, > 17.217, 17.217, 17.217, 17.217, 9.343, 9.343, 17.217, 17.217, 17.217, > 20.698, 17.217, 17.217, 17.217, 5.42, 17.217, 17.217, 17.217, 9.343, > 30.8735, 30.8735, 30.8735, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, > 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, 17.217, 9.343, 9.343, 9.343, > 9.343, 9.343, 9.343, 9.343, 9.343, 30.8735, 30.8735, 17.217, 17.217, > 46.055, 36.239, 17.217, 17.217, 17.217, 46.055, 30.8735, 30.8735, > 17.217, 17.217, 17.217, 121.505, 152.717, 152.717, 17.217, 152.717, > 121.505, 121.505, 121.505, 121.505, 121.505, 9.343, 121.505, 9.343, > 121.505, 121.505, 30.8735, 121.505, 17.217, 17.217, 17.217, 9.343, > 30.8735, 85.271, 85.271, 85.271, 85.271, 85.271, 85.271, 9.343, 85.271, > 85.271, 85.271, 85.271, 20.698, 9.343, 30.8735, 17.217, 20.698, 30.8735, > 17.217, 85.271, 121.505, 121.505, 85.271, 85.271, 85.271, 85.271, > 121.505, 121.505, NA, 121.505, 9.343, 9.343, 9.343, 9.343, 9.343, 9.343, > 9.343, 30.8735, 17.217, 9.343, 9.343, 9.343, 30.8735, 30.8735, 30.8735, > 9.343, 9.343, 30.8735, 17.217, 5.42, 17.217, 85.271, 85.271, 30.8735, > 30.8735, 30.8735, 30.8735, 30.8735, 30.8735, 17.217, 85.271, 17.217, > 30.8735, 30.8735, 85.271, 30.8735, 30.8735, 85.271, 30.8735, 30.8735, > 30.8735, 30.8735, 30.8735, 30.8735, 17.217, 30.8735, 9.343, 30.8735, > 30.8735, 30.8735, 30.8735, 9.343, 30.8735, 30.8735, 17.217, 9.343, > 9.343, 9.343, 85.271, 30.8735, 30.8735, 46.055, 5.69, 85.271, 85.271, > 17.217, 46.055, 85.271, 30.8735, 85.271, 46.055, 121.505, 121.505, > 121.505, 17.217, 17.217, 25.508, 9.343, 17.217, 17.217, 9.343, 17.217, > 9.343, 17.217, 34.35, 34.35, 46.055, 46.055, 9.343, 20.698, 17.217, > 27.25, 20.54, 27.25, 20.698, 17.217, 20.698, 20.698, 15, 15, 8.35, > 13.63, 20.34, 17.217, 5.69, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, > 30, 17.217, 5, 5, 5, 7.93, 7.93, 7.93, 5, 7.71, 5, 17.217, 8.175, 8.175, > 6.69, 6.69, 6.69, 10.875, 5.345, 5.345, 5.345, 5.345, 3.54, 10.755, > 10.755, 10.755, 19.61, 20.145, 20.145, 20.145, 10.34, 5.35, 6.34, 10.34, > 5.35, 10.34, 9.343, 9.343, 9.343, 9.343, 137.111, 17.217, 137.111, > 17.217, 137.111, 137.111, 17.217, 46.055, 46.055, 17.217, 17.77, 20.54, > 17.217, 17.217, 20.54, 11.75, 11.75, 17.217, 56.89, 20.54, 20.54, 55, > 75, 75, 75, 19.61, 19.61, 19.61, 19.61, 19.61, 25.508, 20.698, 5.42, > 5.42, 19.61, 19.61, 19.61, 20.698, 5.42, 25.508, 5.42, 17.217, 16.92, > 9.343, 9.343, 19.61, 9.343, 19.61, 19.61, 16.92, 16.92, 16.92, 5.42, > 5.42, 19.61, 5.42, 9.343, 19.61, 5.42, 5.42, 19.61, 9.343, 46.055, > 17.217, 5.42, 19.61, 5.69, 19.61, 17.217, 9.343, 5.42, 19.61, 19.61, > 17.217, 35.508, 5.42, 5.42, 5.42, 19.61, 17.217, 5.69, 19.61, 19.61, > 8.35, 17.217, 5.69, 19.61, 5.69, 5.69, 17.217, 19.61, 16.92, 19.61, > 17.217, 9.343, 5.42, 17.217, 17.217, 9.343, 33.456, 17.217, 46.055, > 137.11, 56.89, 54.25, 17.217, 56.89, 55, 17.217, 46.055, 20.698, 46.055, > 54.25, 27.25, 53.5, 5.69, 53.5, 20.698, 20.698, 5.69, 17.217, 17.217, > 17.217, 17.217, 17.217, 5.69, 17.217, 17.217, 17.217, 11.75, 17.217, > 5.69, 11.75, 11.75, 5.42, 5.42, 17.217, 5.69, 20.54, 11.75, 5.69, 11.75, > 17.217, 121.505, 121.505, 121.505, 11.75, 5.69, 11.75, 11.75, 20.698, > 121.505, 17.217, 11.75, 17.217, 5.42, 17.217, 17.217, 5.42, 5.69, > 121.505, 17.217, 5.42, 46.055, 5.69, 20.698, 46.055, 15.86, 15.86, 5.69, > 5.69, 11.75, 5.42, 46.055, 5.42, 10.349, 121.505, 15.86, 25.508, 17.217, > 17.217, 11.75, 17.217, 17.217, 17.217, 17.217, 17.217, 17.217, 46.055, > 17.217, 17.217, 17.217, 17.217, 17.217, 5.42, 17.217, 17.217, 17.217, > 9.343, 85.271, 46.055, 17.217, 17.217, 46.055, 25.508, 25.508, 25.508, > 20.698, 19.61, 11.75, 11.75, 11.75, 20.698, 11.75, 11.75, 20.45, 11.75, > 20.45, 20.45, 7.5, 11.75, 11.75, 20.45), taken = c(10L, 2L, 12L, 1L, 4L, > 1L, 10L, 3L, 5L, 5L, 1L, 5L, 3L, 3L, 5L, 2L, 4L, 2L, 1L, 4L, 1L, 1L, 2L, > 1L, 3L, 1L, 3L, 2L, 3L, 2L, 2L, 1L, 4L, 1L, 5L, 2L, 2L, 2L, 2L, 2L, 1L, > 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 2L, 2L, > 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 1L, 4L, 2L, 3L, > 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, > 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 4L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, > 1L, 2L, 3L, 2L, 1L, 1L, 5L, 1L, 1L, 5L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, > 1L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, > 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, > 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, > 3L, 1L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, > 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, > 3L, 2L, 1L, 2L, 2L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 2L, 1L, 1L, 2L, 1L, 1L, > 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, > 4L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 3L, 2L, 2L, 4L, 1L, > 2L, 4L, 3L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, > 2L, 2L, 2L, 2L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 3L, > 2L, 1L, 2L, 1L, 2L), mass = c(13.8758, 2.77516, 16.65096, 1.38758, > 5.55032, 1.38758, 13.8758, 4.16274, 6.9379, 6.9379, 1.38758, 6.9379, > 4.16274, 4.16274, 6.9379, 2.77516, 5.55032, 2.77516, 1.38758, 5.55032, > 1.38758, 1.38758, 2.77516, 1.38758, 4.16274, 1.38758, 4.16274, 2.77516, > 4.16274, 2.77516, 2.77516, 1.38758, 5.55032, 1.38758, 6.9379, 2.77516, > 2.77516, 5.49268, 5.49268, 5.49268, 2.74634, 2.74634, 2.74634, 2.74634, > 2.74634, 2.74634, 8.23902, 1.295, 3.885, 2.59, 2.59, 3.885, 2.59, 3.885, > 1.295, 2.59, 3.885, 2.59, 2.59, 2.59, 1.295, 2.59, 2.59, 2.59, 1.295, > 1.295, 1.295, 1.295, 1.295, 1.295, 2.59, 3.885, 2.59, 1.295, 5.18, 2.59, > 3.885, 2.59, 1.295, 2.59, 1.295, 1.295, 1.295, 2.59, 2.59, 2.59, 2.59, > 1.295, 2.59, 2.59, 2.59, 1.295, 2.59, 3.885, 1.295, 1.295, 1.295, 3.885, > 1.295, 1.295, 1.295, 1.295, 1.295, 3.885, 5.18, 2.59, 1.295, 1.4429, > 2.8858, 1.4429, 1.4429, 2.8858, 1.4429, 1.4429, 2.8858, 4.3287, 2.8858, > 1.4429, 1.4429, 7.2145, 1.4429, 1.4429, 7.2145, 1.4429, 1.4429, 1.4429, > 1.4429, 1.4429, 2.8858, 4.3287, 1.4429, 1.4429, 1.4429, 4.3287, 1.4429, > 2.8858, 2.8858, 2.8858, 1.4429, 2.877, 2.877, 2.877, 2.877, 5.754, > 2.877, 2.877, 2.877, 2.877, 2.877, 2.877, 8.631, 2.877, 2.877, 5.754, > 2.877, 2.877, 2.877, 2.877, 5.754, 2.877, 2.877, 2.877, 2.877, 5.754, > 5.754, 2.877, 2.877, 2.877, 2.877, 2.877, 2.877, 1.3719, 1.3719, 1.3719, > 1.3719, 1.3719, 2.7438, 1.3719, 2.7438, 1.3719, 1.3719, 2.7438, 2.7438, > 1.3719, 1.3719, 1.3719, 1.3719, 2.7438, 1.3719, 1.3719, 2.7438, 1.3719, > 2.7438, 1.3719, 1.3719, 1.3719, 1.3719, 1.3719, 4.1157, 1.3719, 1.3719, > 1.3719, 1.3719, 4.1157, 1.3719, 1.3719, 1.3719, 2.7438, 1.3719, 2.7438, > 4.1157, 1.3719, 2.7438, 1.3719, 2.7438, 2.7438, 2.7438, 2.7438, 2.7438, > 1.3719, 1.3719, 2.7438, 2.7438, 1.3719, 1.3719, 1.3719, 2.8316, 2.8316, > 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, > 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, 2.8316, > 2.8316, 1.17028, 2.34056, 1.17028, 1.17028, 1.17028, 1.17028, 1.17028, > 1.17028, 2.34056, 2.34056, 3.51084, 2.34056, 1.17028, 2.34056, 2.34056, > 2.34056, 1.17028, 3.51084, 2.34056, 2.34056, 3.51084, 3.51084, 2.34056, > 1.17028, 2.03456, 4.06912, 2.03456, 2.03456, 2.03456, 4.06912, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 4.06912, 2.03456, > 2.03456, 2.03456, 2.03456, 2.03456, 2.03456, 1.189102041, 1.189102041, > 1.189102041, 2.378204082, 3.567306123, 2.378204082, 4.756408164, > 2.378204082, 2.378204082, 2.378204082, 1.189102041, 1.189102041, > 1.189102041, 1.189102041, 2.378204082, 1.189102041, 2.378204082, > 1.189102041, 3.567306123, 3.567306123, 2.378204082, 2.378204082, > 4.756408164, 1.189102041, 2.378204082, 4.756408164, 3.567306123, > 3.567306123, 4.756408164, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, > 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, > 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 4.90464, > 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, > 4.90464, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, > 2.45232, 2.45232, 7.35696, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, > 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, > 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, > 2.45232, 2.45232, 2.45232, 2.45232, 4.90464, 2.45232, 2.45232, 2.45232, > 2.45232, 2.45232, 2.45232, 2.45232, 2.45232, 2.64516, 1.76344, 1.76344, > 1.76344, 2.64516, 2.64516, 1.76344, 1.76344, 1.76344, 2.64516, 1.76344, > 1.76344, 1.76344, 1.76344, 1.76344, 1.76344, 2.64516, 2.64516, 0.88172, > 0.88172, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, > 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, > 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, > 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, > 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, 2.46532, > 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 4.93064, 2.46532, > 2.46532, 4.93064, 2.46532, 2.46532, 2.46532, 4.93064, 4.93064, 2.46532, > 4.93064, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, 2.46532, > 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, > 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, > 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, 2.28446939, > 2.28446939, 2.28446939, 4.56893878, 4.568938778, 6.853408167, > 4.56893878, 6.85340817, 4.56893878, 6.85340817, 2.28446939, 4.56893878, > 4.568938778, 2.284469389, 4.56893878, 6.85340817, 4.56893878, > 4.56893878, 6.85340817, 4.56893878, 2.28446939, 4.56893878, 2.28446939, > 4.56893878 )), .Names = c("year", "size", "distance", "taken", "mass"), > class = "data.frame", row.names = c(NA, > > -550L)) > > > > > > ***************************************** > > Jeffrey A. Stratford, Ph.D. > > Department of Health and Biological Sciences > > 84 W. South St. > > Wilkes Univertsity, PA 18766 > > 570-332-2942 > > http://web.wilkes.edu/jeffrey.stratford/ > > ***************************************** > > > > > ? ? ? ?[[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >-- Jim Holtman Data Munger Guru What is the problem that you are trying to solve?