Hi there, I'm trying to solve 2 nonlinear equations in 2 unknowns using the BB package. The first part of my program solves 3 ODEs using the deSolve package. This part works. The output is used as parameter values in the functions I need to solve. The second part is to solve 2 equations in 2 unknowns. This does not work. I get the error message "unexpected end of input". So what inputs am I missing here? As I understand it the arguments I have excluded from dfsane(), such as control, are set to default? parameters <- c(K_vv = 0.0047, K_rv = -0.0268, K_rr = 0.3384, theta_v = 107.4039, theta_r = 5.68, Sigma_rv= 0.0436, Sigma_rr= 0.1145, lambda_v= 0, lambda_r= -0.0764 ) state <- c(b_1 = 0, b_2 = 0, a = 0) Kristian <- function(t, state, parameters){ with(as.list(c(state, parameters)),{ db_1 -((K_vv+lambda_v)*b_1+(K_rv+Sigma_rv*lambda_v+Sigma_rr*lambda_r)*b_2+0.5*(b_1)^2+Sigma_rv*b_1*b_2+0.5*((Sigma_rv)^2+(Sigma_rr)^2)*(b_2)^2 ) db_2 = -K_rr*b_2+1 da = K_vv*theta_v*b_1+(K_rv*theta_v+K_rr*theta_r)*b_2 }) } times <- seq(0, 10, by = 0.5) library(deSolve) out <- ode(y = state, times = times, func = Kristian, parms = parameters) # constructing output as a matrix outmat <- as.matrix(out) library(BB) #loading BB package Bo <- function(x, s){ f <- rep(NA, length(x)) f[1] <- (1-exp(outmat[4,4]-outmat[4,3]*x[1]-outmat[4,2]*x[2]))/ ( exp(-outmat[1,4]-outmat[1,3]*x[1]-outmat[1,2]*x[2]) + exp(-outmat[2,4]-outmat[2,3]*x[1]-outmat[2,2]*x[2]) + exp(-outmat[3,4]-outmat[3,3]*x[1]-outmat[3,2]*x[2]) + exp(-outmat[4,4]-outmat[4,3]*x[1]-outmat[4,2]*x[2]))-s[1] f[2] <-(1-exp(-outmat[20,4]-outmat(20,3)*x[1]-outmat[20,2]*x[2]))/ ( exp(-outmat[1,4]-outmat[1,3]*x[1]-outmat[1,2]*x[2]) + exp(-outmat[2,4]-outmat[2,3]*x[1]-outmat[2,2]*x[2]) + exp(-outmat[3,4]-outmat[3,3]*x[1]-outmat[3,2]*x[2]) + exp(-outmat[4,4]-outmat[4,3]*x[1]-outmat[4,2]*x[2]) + exp(-outmat[5,4]-outmat[5,3]*x[1]-outmat[5,2]*x[2]) + exp(-outmat[5,4]-outmat[5,3]*x[1]-outmat[5,2]*x[2]) + exp(-outmat[6,4]-outmat[6,3]*x[1]-outmat[6,2]*x[2]) + exp(-outmat[7,4]-outmat[7,3]*x[1]-outmat[7,2]*x[2]) + exp(-outmat[8,4]-outmat[8,3]*x[1]-outmat[8,2]*x[2]) + exp(-outmat[9,4]-outmat[9,3]*x[1]-outmat[9,2]*x[2]) + exp(-outmat[10,4]-outmat[10,3]*x[1]-outmat[10,2]*x[2]) + exp(-outmat[11,4]-outmat[11,3]*x[1]-outmat[11,2]*x[2]) + exp(-outmat[12,4]-outmat[12,3]*x[1]-outmat[12,2]*x[2]) + exp(-outmat[13,4]-outmat[13,3]*x[1]-outmat[13,2]*x[2]) + exp(-outmat[14,4]-outmat[14,3]*x[1]-outmat[14,2]*x[2]) + exp(-outmat[15,4]-outmat[15,3]*x[1]-outmat[15,2]*x[2]) + exp(-outmat[16,4]-outmat[16,3]*x[1]-outmat[16,2]*x[2]) + exp(-outmat[17,4]-outmat[17,3]*x[1]-outmat[17,2]*x[2]) + exp(-outmat[18,4]-outmat[18,3]*x[1]-outmat[18,2]*x[2]) + exp(-outmat[19,4]-outmat[19,3]*x[1]-outmat[19,2]*x[2]) + exp(-outmat[20,4]-outmat[20,3]*x[1]-outmat[20,2]*x[2])) -s[2] f s <- c(0.03, 0.045) p<-c(0.5, 0.5) ans <- dfsane(par=p, fn=Bo, s=s) ans$par Any help will be much appreciated! Thank you, Kristian Lind [[alternative HTML version deleted]]