Hi all, I need to test the significnce of difference between slopes of two regression lines and regression line with theoretical line. Is it correct to use t-test in this situation? Here is my script: library(car) d1<-data.frame(P1=c(1,2,3,5,7,8,9,13,14,15), P2=c(1,2,5,8,11,13,15,15,18,24), R=c(2,7,8,9,16,21,27,31,33,36)) # First data set m1<-lm(R~P1+P2+P1*P2,data=d1) # Regr. model d2<-data.frame(P1=c(1,5,4,7,9,1,12,4,4,5), P2=c(1,2,0,7,4,1,2,0,7,0), R=c(3,12,15,15,9,7,4,5,6,1)) # Second data set m2<-lm(R~P1+P2+P1*P2,data=d2) # Regr. model s1<-coefficients(summary(lm(fitted(m1)~d1$R)))[2,1] #Slopes of regr.line s2<-coefficients(summary(lm(fitted(m2)~d2$R)))[2,1] se1<-coefficients(summary(lm(fitted(m1)~d1$R)))[2,2] #SE of slopes se2<-coefficients(summary(lm(fitted(m2)~d1$R)))[2,2] df1<-df.residual(lm(fitted(m1)~d1$R)) #D. of f. df2<-df.residual(lm(fitted(m2)~d1$R)) kk<-function(se1,se2,df1,df2){(se1^2+se2^2)^2/(se1^4/(df1-1)+se2^4/(df2-1))} #D. of f. for Welsch test tt<-function(s1,s2,se1,se2){(s1-s2)/sqrt(se1^2+se2^2)} pp<-function(s1,s2,se1,se2,df1,df2){2*pt(-abs(tt(s1,s2,se1,se2)),df=kk(se1,se2,df1,df2))} pp(s1,s2,se1,se2,df1,df2) # p-value ## Theoretical line s3<-0.75 se3<-0 df3<-0 pp(s1,s3,se1,se3,df1,df3) # p-value pp(s2,s3,se2,se3,df2,df3) # p-value Thanks, A.M.