The following is what I have done: 1)##made an data frame: X=c(1,1,1,1, 1,1,1,2, 1,1,2,1, 1,1,2,2, 1,2,1,1, 1,2,1,2, 1,2,2,1, 1,2,2,2, 2,1,1,1, 2,1,1,2, 2,1,2,1, 2,1,2,2, 2,2,1,1, 2,2,1,2, 2,2,2,1, 2,2,2,2) X=matrix(X,4,16) X=t(X) freq=c(20,2,6,1,9,2,4,1,38,7,25,6,24,6,23,42) makeDAT=function(PAT,freq){ R=nrow(PAT) C=ncol(PAT) DAT=matrix(PAT[1,1:C],C,freq[1]) DAT=t(DAT) for (i in 2:R){ DAT1=matrix(X[i,1:C],C,freq[i]) DAT=rbind(DAT,t(DAT1))} return(DAT) } DAT=makeDAT(X,freq) DAT=as.data.frame(DAT) 2)## omit Rash model: fit1=rasch(DAT, constraint = cbind(length(DAT) + 1,1)) In this model the discrimination paramater is set to 1 for all items. I would like to see if there is an difference in discrimination and difficulty parameters when iam doing the bootstrap method. And if yes, i would like some statistics off the difference. So iam trying to do bootstrap 3## omit bootstrap: model.boot=function(data,indices){ sub.data=data[indices,] modelrasch=rasch(DAT, constraint = cbind(length(DAT) + 1,1)) coef(modelrasch) } rasch.boot=boot(DAT,model.boot,R=1000) rasch.boot 4## conclusion I get this: ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = DAT, statistic = model.boot, R = 1000) Bootstrap Statistics : original bias std. error t1* -1.614125150 0 0 t2* -0.071614733 0 0 t3* -0.003301517 0 0 t4* 0.974310609 0 0 t5* 1.000000000 0 0 t6* 1.000000000 0 0 t7* 1.000000000 0 0 t8* 1.000000000 0 0 The big question is what are the t values? I ask R to omit the boot function to the coefficients of the Rash model (i.e. coef(raschmodel)->thus discrimination and difficulty values). How to interpret? Am i doing something wrong? Could someone please help me? Regards -- View this message in context: http://r.789695.n4.nabble.com/plz-help-with-rasch-model-tp3298824p3298824.html Sent from the R help mailing list archive at Nabble.com.