Asan Ramzan
2011-Feb-03 08:36 UTC
[R] interpret significance from the contr.poly() function
Hello R-help I don’t know how to interpret significance from the contr.poly() function . From the example below : how can I tell if data has a significant Linear/quadratic/cubic trend?> contr.poly(4, c(1,2,4,8)).L .Q .C [1,] -0.51287764 0.5296271 -0.45436947 [2,] -0.32637668 -0.1059254 0.79514657 [3,] 0.04662524 -0.7679594 -0.39757328 [4,] 0.79262909 0.3442576 0.05679618> > diff(contr.poly(4, c(1,2,4,8))[,1])[1] 0.1865010 0.3730019 0.7460038 Thanks [[alternative HTML version deleted]]
Asan Ramzan
2011-Feb-03 11:41 UTC
[R] interpret significance from the contr.poly() function
Hello R-help (sorry if this message gets posted twice, i think I may have accidently postponed it) I don’t know how to interpret significance from the contr.poly() function . From the example below : how can I tell if data has a significant Linear/quadratic/cubic trend?> contr.poly(4, c(1,2,4,8)).L .Q .C [1,] -0.51287764 0.5296271 -0.45436947 [2,] -0.32637668 -0.1059254 0.79514657 [3,] 0.04662524 -0.7679594 -0.39757328 [4,] 0.79262909 0.3442576 0.05679618> > diff(contr.poly(4, c(1,2,4,8))[,1])[1] 0.1865010 0.3730019 0.7460038 Thanks [[alternative HTML version deleted]]
By fitting some kind of model. contr.poly doesn't fit a model or test significance, it just sets contrasts. Here is an example data(mtcars)> mtcars$carb <- factor(mtcars$carb) > contrasts(mtcars$carb) <- contr.poly(n=levels(mtcars$carb)) > contrasts(mtcars$carb).L .Q .C ^4 ^5 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408 2 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039 3 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079 4 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079 6 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039 8 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408> mt.mod <- lm(mpg ~ carb, data=mtcars) > summary(mt.mod)Call: lm(formula = mpg ~ carb, data = mtcars) Residuals: Min 1Q Median 3Q Max -7.243 -3.325 0.000 2.360 8.557 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 19.0888 1.3373 14.274 8.18e-14 *** carb.L -7.2101 3.6566 -1.972 0.0594 . carb.Q 3.4101 3.2378 1.053 0.3019 carb.C -2.2938 3.4567 -0.664 0.5128 carb^4 -4.1155 3.3132 -1.242 0.2253 carb^5 -0.1224 2.6213 -0.047 0.9631 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 4.905 on 26 degrees of freedom Multiple R-squared: 0.4445, Adjusted R-squared: 0.3377 F-statistic: 4.161 on 5 and 26 DF, p-value: 0.006546 Best, Ista On Thu, Feb 3, 2011 at 8:36 AM, Asan Ramzan <asanramzan at yahoo.com> wrote:> Hello R-help > I don?t know how to interpret significance from the contr.poly() function . From > the example below > : how can I tell if data has a significant Linear/quadratic/cubic trend? >> contr.poly(4, c(1,2,4,8)) > ????????????? .L???????? .Q????????? .C > [1,] -0.51287764? 0.5296271 -0.45436947 > [2,] -0.32637668 -0.1059254? 0.79514657 > [3,]? 0.04662524 -0.7679594 -0.39757328 > [4,]? 0.79262909? 0.3442576? 0.05679618 >> >> diff(contr.poly(4, c(1,2,4,8))[,1]) > [1] 0.1865010 0.3730019 0.7460038 > Thanks > > > > ? ? ? ?[[alternative HTML version deleted]] > > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >-- Ista Zahn Graduate student University of Rochester Department of Clinical and Social Psychology http://yourpsyche.org
RICHARD M. HEIBERGER
2011-Feb-03 15:22 UTC
[R] interpret significance from the contr.poly() function
You can use the summary with the split argument. See ?summary.aov for an example. This gives similar results to the regression coefficients approach that Ista Zahn suggested. I usually prefer the ANOVA table approach for factors. On Thu, Feb 3, 2011 at 3:36 AM, Asan Ramzan <asanramzan@yahoo.com> wrote:> Hello R-help > I don’t know how to interpret significance from the contr.poly() function .[[alternative HTML version deleted]]