Hi I have a daily level time series data. What I need to do is a time series analysis and forecasting and stuff. But the thing I am stuck at is - I cant get a decent time series plot of the data I have http://r.789695.n4.nabble.com/file/n3021952/test.jpg This is a plot of daily level data from July 09 to Oct 10. what I am interested is in - like instead of just 2010 time stamp on x axis, if I could have monthly tags it would be great. Here is what I have done - MY DATA IS OF THIS FORMAT Date X Y Z A B C D E F G 7/1/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/2/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/3/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/4/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/5/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/6/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/7/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/8/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/9/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/10/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/11/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/12/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/13/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/14/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/15/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/16/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/17/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/18/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/19/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/20/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/21/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/22/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/23/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/24/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/25/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/26/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/27/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/28/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/29/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/30/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/31/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/1/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/2/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/3/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/4/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/5/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/6/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/7/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/8/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/9/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/10/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/11/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/12/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/13/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/14/2009 294 52.40% 29 5.20% 108 19.30% 1 0.20% 10 1.80% 8/15/2009 217 49.90% 13 3.00% 49 11.30% 52 12.00% 19 4.40% 8/16/2009 481 59.10% 76 9.30% 94 11.50% 4 0.50% 15 1.80% 8/17/2009 568 65.00% 58 6.60% 119 13.60% 4 0.50% 29 3.30% 8/18/2009 416 62.80% 25 3.80% 86 13.00% 7 1.10% 23 3.50% 8/19/2009 529 58.10% 47 5.20% 105 11.50% 34 3.70% 49 5.40% ... .. . WHAT I DID . file<-read.csv("filename.csv",header=TRUE) miedata<-as.POSIXct(strptime(as.character(file[,1]),format="%m/%d/%Y")) zoom<-zoo(file[,2],miedata) plot(zoom) Any help of any sort will be greatly appreciated. Its been very hard to get a grip of Irregular Time Series in R Thanks -- View this message in context: http://r.789695.n4.nabble.com/Irregular-Time-Series-tp3021952p3021952.html Sent from the R help mailing list archive at Nabble.com.
Hi I have a daily level time series data. What I need to do is a time series analysis and forecasting and stuff. But the thing I am stuck at is - I cant get a decent time series plot of the data I have http://r.789695.n4.nabble.com/file/n3021984/test.jpg This is a plot of daily level data from July 09 to Oct 10. what I am interested is in - like instead of just 2010 time stamp on x axis, if I could have monthly tags it would be great. Here is what I have done - MY DATA IS OF THIS FORMAT Date X Y Z A B C D E F G 7/1/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/2/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/3/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/4/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/5/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/6/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/7/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/8/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/9/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/10/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/11/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/12/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/13/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/14/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/15/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/16/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/17/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/18/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/19/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/20/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/21/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/22/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/23/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/24/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/25/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/26/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/27/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/28/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/29/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/30/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 7/31/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/1/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/2/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/3/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/4/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/5/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/6/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/7/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/8/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/9/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/10/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/11/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/12/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/13/2009 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 8/14/2009 294 52.40% 29 5.20% 108 19.30% 1 0.20% 10 1.80% 8/15/2009 217 49.90% 13 3.00% 49 11.30% 52 12.00% 19 4.40% 8/16/2009 481 59.10% 76 9.30% 94 11.50% 4 0.50% 15 1.80% 8/17/2009 568 65.00% 58 6.60% 119 13.60% 4 0.50% 29 3.30% 8/18/2009 416 62.80% 25 3.80% 86 13.00% 7 1.10% 23 3.50% 8/19/2009 529 58.10% 47 5.20% 105 11.50% 34 3.70% 49 5.40% ... .. . WHAT I DID . file<-read.csv("filename.csv",header=TRUE) miedata<-as.POSIXct(strptime(as.character(file[,1]),format="%m/%d/%Y")) zoom<-zoo(file[,2],miedata) plot(zoom) Any help of any sort will be greatly appreciated. Its been very hard to get a grip of Irregular Time Series in R Thanks -- View this message in context: http://r.789695.n4.nabble.com/Irregular-Time-Series-tp3021984p3021984.html Sent from the R help mailing list archive at Nabble.com.
On Mon, Nov 1, 2010 at 6:59 AM, mysterio66 <tarun.baloch at iprospect.com> wrote:> > Hi > > I have a daily level time series data. What I need to do is a time series > analysis and forecasting and stuff. > > But the thing I am stuck at is - I cant get a decent time series plot of the > data I have > http://r.789695.n4.nabble.com/file/n3021984/test.jpg > > This is a plot of daily level data from July 09 to Oct 10. what I am > interested is in - like instead of just 2010 time stamp on x axis, if I > could have monthly tags it would be great.There is an example in example(plot.zoo) -- Statistics & Software Consulting GKX Group, GKX Associates Inc. tel: 1-877-GKX-GROUP email: ggrothendieck at gmail.com