I want to use something like printCoefmat() in a print.summary method to print a more nicely formatted version of the result from a summary method, but where the estimates may be cross-classified by one or more factors. However, printCoefmat() assumes that the labels for the parameters are the rownames of the object, and prints factors as integers. With one factor, I could just assign that as the rownames, but with >1, I would be forced to paste() them together, giving a less readable display. Perhaps printCoefmat() needs another argument for this case (factor.ind= indices of column numbers which are factors, or stringsAsFactors=TRUE), or maybe there is some other method I could use. Here is an example: > summary(lor.Emp) EmploymentLength LayoffCause Log Odds Ratio Std. Error z value Pr(>|z|) 1 <1Mo:1-3Mo Closure -0.04082199 0.5143769 -0.07936203 0.468372334 2 1-3Mo:3-12Mo Closure 0.02353050 0.2782868 0.08455486 0.466307643 3 3-12Mo:1-2Yr Closure 0.04904020 0.2327390 0.21070895 0.416557193 4 1-2Yr:2-5Yr Closure -0.07555132 0.2468528 -0.30605823 0.379780157 5 2-5Yr:>5Yr Closure -0.26157903 0.2943756 -0.88858949 0.187111872 6 <1Mo:1-3Mo Replaced -0.19415601 0.3173846 -0.61173729 0.270355791 7 1-3Mo:3-12Mo Replaced -0.77994333 0.2546200 -3.06316597 0.001095043 8 3-12Mo:1-2Yr Replaced -0.18513757 0.3192303 -0.57994984 0.280974223 9 1-2Yr:2-5Yr Replaced 0.19521478 0.3422052 0.57046111 0.284182498 10 2-5Yr:>5Yr Replaced -0.24791884 0.3971645 -0.62422200 0.266240900 > str(summary(lor.Emp)) 'data.frame': 10 obs. of 6 variables: $ EmploymentLength: Factor w/ 5 levels "<1Mo:1-3Mo","1-3Mo:3-12Mo",..: 1 2 3 4 5 1 2 3 4 5 $ LayoffCause : Factor w/ 2 levels "Closure","Replaced": 1 1 1 1 1 2 2 2 2 2 $ Log Odds Ratio : num -0.0408 0.0235 0.049 -0.0756 -0.2616 ... $ Std. Error : num 0.514 0.278 0.233 0.247 0.294 ... $ z value : num -0.0794 0.0846 0.2107 -0.3061 -0.8886 ... $ Pr(>|z|) : num 0.468 0.466 0.417 0.38 0.187 ... Result from printCoefmat() is considerably worse: > printCoefmat(summary(lor.Emp)) EmploymentLength LayoffCause Log Odds Ratio Std. Error z value Pr(>|z|) [1,] 1.000000 1.000000 -0.040822 0.514377 -0.0794 0.468372 [2,] 2.000000 1.000000 0.023530 0.278287 0.0846 0.466308 [3,] 3.000000 1.000000 0.049040 0.232739 0.2107 0.416557 [4,] 4.000000 1.000000 -0.075551 0.246853 -0.3061 0.379780 [5,] 5.000000 1.000000 -0.261579 0.294376 -0.8886 0.187112 [6,] 1.000000 2.000000 -0.194156 0.317385 -0.6117 0.270356 [7,] 2.000000 2.000000 -0.779943 0.254620 -3.0632 0.001095 ** [8,] 3.000000 2.000000 -0.185138 0.319230 -0.5799 0.280974 [9,] 4.000000 2.000000 0.195215 0.342205 0.5705 0.284182 [10,] 5.000000 2.000000 -0.247919 0.397165 -0.6242 0.266241 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > -- Michael Friendly Email: friendly AT yorku DOT ca Professor, Psychology Dept. York University Voice: 416 736-5115 x66249 Fax: 416 736-5814 4700 Keele Street Web: http://www.datavis.ca Toronto, ONT M3J 1P3 CANADA