Christine SINOQUET
2010-Nov-18 16:00 UTC
[R] genralized linear regression - function glm - number of
Hello, Performing a linear regression through the function glm ("yi ~ X$V1 + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + X$V10"), I then edit the information about the coefficients: print(coefficients(summary(fit))) I note that the number of coefficients (7) is lower than the number of predictors (10). In this case, I work on simulated data for which I forced yi to be a linear function of the 10 predictors. intercept: 0.0180752965003802 predictor 1: -0.0111046268531608 predictor 2: -0.0185366138753851 predictor 3: 0.107341157096227 predictor 4: 0.00162924662836275 predictor 5: 0.00162924629403743 predictor 6: -0.0171999854554059 predictor 7: -0.0171999856835917 predictor 8: -0.057207682945982 predictor 9: -0.0171999856239631 predictor 10: 0.134643228957395 "yi ~ X$V1 + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + X$V10" Estimate Std. Error t value Pr(>|t|) (Intercept) 0.018062134 5.624517e-17 3.211322e+14 0 X$V1 -0.011104627 3.084989e-17 -3.599567e+14 0 X$V2 -0.018536614 3.241635e-17 -5.718291e+14 0 X$V3 0.107341157 4.884358e-17 2.197651e+15 0 X$V4 0.003258493 3.286878e-17 9.913643e+13 0 X$V6 -0.051599957 4.203840e-17 -1.227448e+15 0 X$V8 -0.057207683 3.049835e-17 -1.875763e+15 0 X$V10 0.134643229 3.849911e-17 3.497308e+15 0 I am sure to have regressed the right number of variables, since I check that the formula is correct: "yi ~ X$V1 + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + X$V10" Could somebody explain to me 1) why there are mismatches between the "true" coefficients for predictors 4 and 6 and 2) why there is no information edited for predictors 5, 7 and 9 ? Thanks in advance for your kind help. C.S.
David Winsemius
2010-Nov-18 16:37 UTC
[R] genralized linear regression - function glm - number of
On Nov 18, 2010, at 11:00 AM, Christine SINOQUET wrote:> Hello, > > Performing a linear regression through the function glm ("yi ~ X$V1 > + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + X$V10"), I > then edit the information about the coefficients: > > print(coefficients(summary(fit))) > > I note that the number of coefficients (7) is lower than the number > of predictors (10). > In this case, I work on simulated data for which I forced yi to be a > linear function of the 10 predictors. >What code was used to make the simulation?> intercept: 0.0180752965003802 > predictor 1: -0.0111046268531608 > predictor 2: -0.0185366138753851 > predictor 3: 0.107341157096227 > predictor 4: 0.00162924662836275 > predictor 5: 0.00162924629403743 > predictor 6: -0.0171999854554059 > predictor 7: -0.0171999856835917 > predictor 8: -0.057207682945982 > predictor 9: -0.0171999856239631 > predictor 10: 0.134643228957395 > > > "yi ~ X$V1 + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + > X$V10" > Estimate Std. Error t value Pr(>|t|) > (Intercept) 0.018062134 5.624517e-17 3.211322e+14 0 > X$V1 -0.011104627 3.084989e-17 -3.599567e+14 0 > X$V2 -0.018536614 3.241635e-17 -5.718291e+14 0 > X$V3 0.107341157 4.884358e-17 2.197651e+15 0 > X$V4 0.003258493 3.286878e-17 9.913643e+13 0 > X$V6 -0.051599957 4.203840e-17 -1.227448e+15 0 > X$V8 -0.057207683 3.049835e-17 -1.875763e+15 0 > X$V10 0.134643229 3.849911e-17 3.497308e+15 0 > > > I am sure to have regressed the right number of variables, since I > check that the formula is correct: > "yi ~ X$V1 + X$V2 + X$V3 + X$V4 + X$V5 + X$V6 + X$V7 + X$V8 + X$V9 + > X$V10" > > Could somebody explain to me > 1) why there are mismatches between the "true" coefficients for > predictors 4 and 6 > andYour std errors are incredibly small (effectively zero from a numerical perspective) suggesting you have created a dataset with extremely small amounts of noise. The coefficients are different (than expected) because of the answer to the next question.> 2) why there is no information edited for predictors 5, 7 and 9 ?You most likely had each of those set up as a linear combination of the retained predictors. Collinear variables are dropped and usually there is a warning, bust since you have not given a console session I cannot be sure. -- David Winsemius, MD West Hartford, CT