Hi dear all,
i have a data (data.frame) which contain y and x coloumn(i.e.
y x
1 0.58545723 0.15113102
2 0.02769361 -0.02172165
3 1.00927527 -1.80072610
4 0.56504053 -1.12236685
5 0.58332337 -1.24263981
6 -1.70257274 0.46238255
7 -0.88501561 0.89484429
8 1.14466282 0.34193875
9 0.58827457 0.15923694
10 -0.79532232 -1.44193770 )
i changed the first data points by an outlier (i.e.
y x
1 10 25
2 0.02769361 -0.02172165
3 1.00927527 -1.80072610
4 0.56504053 -1.12236685
5 0.58332337 -1.24263981
6 -1.70257274 0.46238255
7 -0.88501561 0.89484429
8 1.14466282 0.34193875
9 0.58827457 0.15923694
10 -0.79532232 -1.44193770 )
then i generate the 1000 bootstrap sample with this data set, some of them
not contain these outliers, some of them contain once and some of them
contain many time... Now i want to count how many samples not contain these
outliers.
Thank so much any idea!
--
View this message in context:
http://r.789695.n4.nabble.com/Counting-tp3045756p3045756.html
Sent from the R help mailing list archive at Nabble.com.
You could try something like this: Loop through your bootstrapped samples and store which ones have the outlier you are looking for using code like: count = c(count, outlier.value %in% boot.sample$outlier.variable) Then subtract the count variable from the total number of samples to get the number of samples without the outlier N.nooutlier = Total - count Andrew Miles On Nov 16, 2010, at 4:55 PM, ufuk beyaztas wrote:> > Hi dear all, > > i have a data (data.frame) which contain y and x coloumn(i.e. > > y x > 1 0.58545723 0.15113102 > 2 0.02769361 -0.02172165 > 3 1.00927527 -1.80072610 > 4 0.56504053 -1.12236685 > 5 0.58332337 -1.24263981 > 6 -1.70257274 0.46238255 > 7 -0.88501561 0.89484429 > 8 1.14466282 0.34193875 > 9 0.58827457 0.15923694 > 10 -0.79532232 -1.44193770 ) > > i changed the first data points by an outlier (i.e. > > y x > 1 10 25 > 2 0.02769361 -0.02172165 > 3 1.00927527 -1.80072610 > 4 0.56504053 -1.12236685 > 5 0.58332337 -1.24263981 > 6 -1.70257274 0.46238255 > 7 -0.88501561 0.89484429 > 8 1.14466282 0.34193875 > 9 0.58827457 0.15923694 > 10 -0.79532232 -1.44193770 ) > > then i generate the 1000 bootstrap sample with this data set, some > of them > not contain these outliers, some of them contain once and some of them > contain many time... Now i want to count how many samples not > contain these > outliers. > Thank so much any idea! > > > -- > View this message in context: http://r.789695.n4.nabble.com/Counting-tp3045756p3045756.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.
thank you very much for your idea,
if i write code as;
my data name is data.
samples<-function(data,num){
resamples<-lapply(1:num,function(i) sample(data,n,replace=TRUE))
list(resamples=resamples)}
>n=10
data<-rnorm(n=10,mean=5,sd=2)
data[1]=100
obj<-samples(data,1000)
i generate 1000 sample, i did not use 'boot'. 100 is a outlier in the
data
set and same stuation, some of samples not contain , some of samples contain
once and some of them contain many times. Now can you tell me how i count
how many samples are there not contain any outlier in the 1000 samples?
--
View this message in context:
http://r.789695.n4.nabble.com/Counting-tp3045756p3045842.html
Sent from the R help mailing list archive at Nabble.com.