G'day, I'm?calculating LSM for the following model, and am finding that R and SAS give different answers. Whilst the error is at the second or third decimal, the percentage error can be quite large. I'm using the effects library (Version: 2.0-10) on R?2.11.1 in the following manner: options(contrasts=c("contr.helmert","contr.poly")) aov2<-glm(log(y+.01)~covar+var1:var3+var2:var3+var1+var2+var3,data=mydat,weights=w) mod<-effect("var1",aov2) cbind(mod$fit, mod$se) R gives the following?values for var1: ??? LSM???????????? SE ?-4.080362 0.06692946 ?-4.221714 0.10233130 The same problem gives the following values in SAS: var1 ln_y Error -4.10699540 0.06879095 -4.21943501 0.10096482 The following is my SAS code: PROC IMPORT OUT= WORK.dat DATAFILE= "C:\Documents and Settings\nxf\Desktop\mydat.xls" DBMS=EXCEL REPLACE; GETNAMES=YES; MIXED=NO; SCANTEXT=YES; USEDATE=YES; SCANTIME=YES; RUN; proc contents data=dat; run; data dum; set dat; ln_y = log(y+0.01); run; proc glm data=dum; title2 'test'; weight w; class var1 var2 var3; model ln_y = covar var1 var2 var3 var1*var3 var2*var3; lsmeans var1 var2 var3 var1*var3 var2*var3 /out=LSMeffect stderr; run;quit; proc print data=LSMeffect; run; proc export data=LSMeffect outfile='C:\Documents and Settings\nxf\Desktop\sas1.xls' DBMS=EXCEL2000 replace; run; I've been using R for about 4 months, apologies if this has a simple solution I'm unaware of. I'm completely new to SAS. Many thanks in advance, Nieves Felipe.