That would not work in "optim". The objective function must take in a
vector of parameters and return a scalar value. Your objective function
does not return a scalar.
This would work:
test <- function(x, ...){
m.error <- mean(distribution(x)) - observed.mean
sd.error <- std(distribution(x)) - observed.std
res <- c(m.error, sd.error)
return(sum(res^2)) # returns a scalar
}
Ravi.
-----Original Message-----
From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
On
Behalf Of Bernardo Rangel Tura
Sent: Thursday, May 20, 2010 6:02 AM
To: r-help at r-project.org
Subject: Re: [R] Minimization problem
On Thu, 2010-05-20 at 01:35 -0700, Fred wrote:> Dear R users,
>
> I am trying to minimize two function simultaneously in R,
>
> function(x)
>
> minimize x[1],x[2],x[3]
>
> mean(distribution(x1,x2,x3) ) - observed mean
>
> std(distribution(x1,x2,x3)) - observed std
>
> What I want to achieve is that simulated mean and standard deviation
> of distribution related to x1 x2 x3 would be close to observed mean
> and observed standard deviation.
>
>
> is there any function in R can reach this?
>
> Thank you for the help first .
>
> F.
Hi!
Do you need use optim, something like this
test <- function(parameters){
m.error <- mean(distribution(x1,x2,x3) ) - observed mean
m.sd <- std(distribution(x1,x2,x3)) - observed std
res <- cbind(m.error,sd.error)
return(res)
}
--
Bernardo Rangel Tura, M.D,MPH,Ph.D
National Institute of Cardiology
Brazil
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.