Hello Tara,
To answer your question, I believe the simpler way you are looking for is
specifying the na.string argument in read.table(). Using na.string
specifies characters (or numbers) as missing data. For instance...
I saved the first five lines of your data in a tab delimitted text file
called "helper.txt". First I read it in without using the na.string
argument.
habitat <- read.table(file="helper.txt", header=TRUE,
sep="\t")
##Notice the results of str()
> str(habitat)
'data.frame': 5 obs. of 13 variables:
$ X : int 1 2 3 4 5
$ gdist : int 20 4 30 40 40
$ gair : num 8 13 12.6 12.6 2
$ gsub : num 14 15 16.4 17.9 1.8
$ m6dist: num -0.5 -0.1 -3 1 1
$ m6air : Factor w/ 4 levels "24","24.5","25",..:
1 2 3 4 4 ##
particularly notice that where there were n/a
$ m6sub : Factor w/ 4 levels "19","24.5","26",..:
1 2 3 4 4 ## it
was interpreted as a Factor
$ m7dist: num 7 0.1 2.5 0.1 0.7
$ m7air : num 12.1 11.4 9.7 8.1 10.2
$ m7sub : num 16.1 15.1 12.8 15.2 24.1
$ m8dist: num 2.5 2 0.1 2 2
$ m8air : num 12 14 11.5 16 16
$ m8sub : int 12 16 14 20 19
## Now telling R that n/a are missing data
habitat.na <- read.table(file="helper.txt", header=TRUE,
sep="\t",
na.string="n/a")> str(habitat.na)
'data.frame': 5 obs. of 13 variables:
$ X : int 1 2 3 4 5
$ gdist : int 20 4 30 40 40
$ gair : num 8 13 12.6 12.6 2
$ gsub : num 14 15 16.4 17.9 1.8
$ m6dist: num -0.5 -0.1 -3 1 1
$ m6air : num 24 24.5 25 NA NA ## now the n/a's were replaced
$ m6sub : num 19 24.5 26 NA NA ## and it is interpreted as numeric
$ m7dist: num 7 0.1 2.5 0.1 0.7
$ m7air : num 12.1 11.4 9.7 8.1 10.2
$ m7sub : num 16.1 15.1 12.8 15.2 24.1
$ m8dist: num 2.5 2 0.1 2 2
$ m8air : num 12 14 11.5 16 16
$ m8sub : int 12 16 14 20 19
Once R knows that the data is missing, it should work the with linear
model.
Some other advice:
When you're providing data, it is often convenient to just give a few lines
(or representative sample). Another really helpful way of providing data is
via dput(). The results of dput() can be read directly (e.g., pasting into
the console). A helpful feature of dput() is that it preserves the object
class, this helps other people see exactly what you are working with. Here
is the results of dput() from the habitat.na object above.
> dput(habitat.na)
structure(list(X = 1:5, gdist = c(20L, 4L, 30L, 40L, 40L), gair = c(8,
13, 12.6, 12.6, 2), gsub = c(14, 15, 16.4, 17.9, 1.8), m6dist = c(-0.5,
-0.1, -3, 1, 1), m6air = c(24, 24.5, 25, NA, NA), m6sub = c(19,
24.5, 26, NA, NA), m7dist = c(7, 0.1, 2.5, 0.1, 0.7), m7air = c(12.1,
11.4, 9.7, 8.1, 10.2), m7sub = c(16.1, 15.1, 12.8, 15.2, 24.1
), m8dist = c(2.5, 2, 0.1, 2, 2), m8air = c(12, 14, 11.5, 16,
16), m8sub = c(12L, 16L, 14L, 20L, 19L)), .Names = c("X",
"gdist",
"gair", "gsub", "m6dist", "m6air",
"m6sub", "m7dist", "m7air",
"m7sub", "m8dist", "m8air", "m8sub"),
class = "data.frame", row.names c(NA,
-5L))
I hope this was understandable and helps. I think you will really enjoy R
as you get to know it.
HTH,
Joshua
On Fri, Apr 16, 2010 at 1:08 PM, Tara Imlay <tara.leah@gmail.com> wrote:
> Hi,
>
> I am very new to R and I've been trying to work through the R book to
gain
> a
> better idea of the code (which is also completely new to me).
>
> Initially I imputed my data from a text file and that seemed to work ok,
> but
> I'm trying to examine linear relationships between gdist and gair,
gdist
> and
> gsub, m6dist and m6air, etc.
>
> This didn't work and I think it might have something to do with the
n/a's
> in
> my dataset.
> > habitat
> gdist gair gsub m6dist m6air m6sub m7dist m7air m7sub m8dist m8air m8sub
> 1 20 8 14 -0.5 24 19 7 12.1 16.1 2.5 12
> 12
> 2 4 13 15 -0.1 24.5 24.5 0.1 11.4 15.1 2 14
> 16
> 3 30 12.6 16.4 -3 25 26 2.5 9.7 12.8 0.1 11.5
> 14
> 4 40 12.6 17.9 1 n/a n/a 0.1 8.1 15.2 2 16
> 20
> 5 40 2 1.8 1 n/a n/a 0.7 10.2 24.1 2 16
> 19
> 6 10 13 31 1.5 n/a n/a n/a 20 n/a 2 17
> 20
> 7 0.1 19.1 27.9 1 24.5 26 0.1 20.6 22.4 6 17
> 21.5
> 8 1 23.4 33.1 0.25 25 24.5 2 22.4 24.1 1.5 17
> 18
> 9 7 23.5 30.5 -1 29.7 29 0.1 27.8 24.2 3 11
> 12
> 10 9 23.5 25.4 2 n/a n/a 4 29.3 24.2 6 13
> 14
> 11 2 23.5 23 0.05 28.5 26 1 29.7 26.6 2 15
> 15
> 12 1 23.6 23.4 0.3 22.2 24.8 0.1 20.6 22.6 2 15
> 21
> 13 1.5 24 26.2 0.1 23.7 23.2 0.1 20.9 26.6 4 17.5
> 17
> 14 6 19.4 23.4 0.05 24.5 27.6 1 21.1 25.5 5 18
> 22
> 15 0.5 19.6 32.7 2.5 26.4 n/a 2 12.1 16.4 2 19
> 26
> 16 5 20.2 23.4 -12 22.4 26.1 2 14.4 16.6 1 n/a
> n/a
> 17 10 23.1 24.1 0.2 23.6 24.3 0.1 14.4 17.7 4 9
> 12
> 18 6 17 19 -10 23.6 21.5 1 16.2 16.9 0.1 10
> 12
> 19 6 17 19 60 n/a n/a 10 13.3 24.3 3 8
> 12
> 20 2 19 21 60 n/a n/a 7 19.5 23.9 3 9
> 13
> 21 2 19 21 2 17.3 17.3 2 21.1 25.5 2 10
> 15
> 22 2 20 23 2 17.3 17.3 3 21.5 21.4 4 11
> 16.5
> 23 3 20 23 2 22.5 24.1 1.5 17.6 21.7 0.1 12
> 15
> 24 1 8.1 8.6 2 22.5 24.5 10 17.7 23 8 15
> 21
> 25 2.5 8.4 9.6 3 n/a n/a 1 22.3 26.8 2 8
> 14
> 26 15 11.5 12.1 20 n/a n/a -1 27.3 26.6 1 15
> 14
> 27 -0.5 13.6 9.3 5 n/a n/a 1 27.4 31.3 3 15
> 12
> 28 4 13.9 16.6 7 n/a n/a 1 23.2 30.1 0.1 13
> 16
> 29 1 14.7 17.7 1.5 n/a n/a 3 18.9 31.4 3 16
> 21
> 30 5 14.9 23.3 0.2 23.3 25.3 3 18.9 29.7 0.1 16
> 18
> 31 6 14.9 19.1 2.5 n/a n/a 5 19 24.8 8 13.5
> 16
> 32 2.5 14.9 21.6 3 n/a n/a 4 19 20.5 3 20
> 23
> 33 8 15.4 14.6 4 13.3 12.8 0.3 20.5 25.8 1 20
> 18
> 34 0.2 16.3 16.2 3.5 14.5 15.7 8 20.6 28 1 21
> 23
> 35 7 17.4 19.4 2 16 15.7 8 22.3 23 1 21
> 25
> 36 12 18.7 21.1 0.5 14.5 13.5 8 22.3 21.6 2 12
> 14
> 37 1 18.8 18.9 n/a n/a n/a 7 22.3 23.4 3 13.5
> 24
> 38 1.5 19 21.7 n/a n/a n/a 7 14.5 18.6 3 14
> 27
> 39 1.5 19 19.3 n/a n/a n/a 7 15 18.6 0.3 14
> 21
> 40 1 19.4 21 n/a n/a n/a 0.1 17.3 21 0.01 15
> 16
> 41 0.3 19 17.9 n/a n/a n/a 10 18 26.3 0.01 16
> 14
> 42 0.2 19 17.9 n/a n/a n/a 10 18.1 24.9 0.25 16
> 25
> 43 0.2 21.5 18.4 n/a n/a n/a 2.5 19 21.1 2 15
> 18
> 44 1 22.1 22.3 n/a n/a n/a 2 19.5 21.1 2 18
> 18
> 45 2 22.5 20.6 n/a n/a n/a 1 24.1 27.7 -1 22
> 25
> 46 10 n/a n/a n/a n/a n/a 0.5 14.7 18.1 -1 23
> 22
> 47 10 21.1 25.8 n/a n/a n/a 15 16.4 20.3 3 23
> 30
> 48 30 n/a n/a n/a n/a n/a 15 16.4 20.3 0.15 30
> 24
> 49 10 n/a n/a n/a n/a n/a 16 16.4 23.2 4 23
> 23
> 50 10 n/a n/a n/a n/a n/a 8 18.2 22.5 3 23
> 24
> 51 15 14.4 20.2 n/a n/a n/a 10 18.2 24.5 0.1 26
> 29
> 52 3 12.7 19.7 n/a n/a n/a 8 18.7 22.5 0.2 20
> 21
> 53 5 14 14.7 n/a n/a n/a 3 19 24.1 1.5 21
> 21
> 54 1 16.9 17.9 n/a n/a n/a 4 20.7 26.2 1.5 23
> 23
> 55 2 17 17.9 n/a n/a n/a 3.5 17 18.8 0.05 24
> 24
> 56 0.5 11.2 11.7 n/a n/a n/a 3 17.4 20.4 2 26
> 26
> 57 0 12.7 14.7 n/a n/a n/a 1.5 19.4 21.2 n/a n/a
> n/a
> 58 0 14.2 20 n/a n/a n/a 5 n/a n/a 10 22
> 23
> 59 1.5 14.2 16.8 n/a n/a n/a 5 20.8 22.3 3 25
> 25
> 60 10 16.1 2 n/a n/a n/a 7 20.9 27.2 2 25
> 25
> 61 3.5 14.8 17 n/a n/a n/a 4 21 20.5 4 21
> 23
> 62 0.1 16.6 14.8 n/a n/a n/a 4 22.3 21.7 15 28
> 26
> 63 -0.1 17.1 26.9 n/a n/a n/a 8 22.3 27.3 2 23
> 22
> 64 -2 17.7 27.1 n/a n/a n/a 2 22.8 23.2 3 22
> 25
> 65 1.5 18.9 20.3 n/a n/a n/a 6 25.5 24.3 2 25
> 27
> 66 3 19.7 23.3 n/a n/a n/a 5 n/a n/a 0.1 26
> 27
> 67 -0.3 20.4 23.4 n/a n/a n/a 7 n/a n/a 0.5 28
> 36
> 68 0.3 23.3 33.6 n/a n/a n/a 7 n/a n/a 3 27
> 29
> 69 0 20.8 25.4 n/a n/a n/a 6 n/a n/a 1.5 23
> 23
> 70 0.7 22 26.6 n/a n/a n/a 4 n/a n/a 2 23
> 23
> 71 2 22.4 25.8 n/a n/a n/a 4 23.1 21.8 2 24
> 25
> 72 0 23.4 26.6 n/a n/a n/a 0.05 23.2 24.4 2 24
> 25
> 73 5 19.4 24.1 n/a n/a n/a 0.1 25.3 28.4 0.2 24
> 24
> 74 8 19.6 27.1 n/a n/a n/a 0.5 25.4 25.4 -0.1 24
> n/a
> 75 5 19.6 27 n/a n/a n/a 10 n/a n/a 2 18
> 19
> 76 1 19.7 29.8 n/a n/a n/a -3 22.4 22.4 15 19
> 20
> 77 8 20.6 37.6 n/a n/a n/a -2 22.8 21.6 4 17
> 19
> 78 15 21 23.7 n/a n/a n/a -1 23.1 23.4 4 30
> 24
> 79 2 24.6 25.3 n/a n/a n/a -3 23.1 24.1 n/a 26
> n/a
> 80 3.5 25.2 26.9 n/a n/a n/a -3.5 24.5 20.5 1 28
> n/a
> 81 5 17.8 22.8 n/a n/a n/a 2.5 25.4 31.9 n/a 28
> n/a
> 82 15 20 24.6 n/a n/a n/a 7 19.6 20.4 2 29
> n/a
> 83 3 21.1 24.3 n/a n/a n/a -3 23.1 27.1 1 24
> n/a
> 84 5 17.2 19.5 n/a n/a n/a 3 23.8 28.4 1 25
> n/a
> 85 7 17.2 18 n/a n/a n/a 0.5 24.4 25.2 0.75 25
> n/a
> 86 -0.3 23.8 24.5 n/a n/a n/a -1.5 25.2 23.9 2 25
> n/a
> 87 0.2 25.9 26.5 n/a n/a n/a -2 29.5 25.2 1 24
> 28
> 88 -3 20.4 24 n/a n/a n/a 6 29.8 33.6 5 18
> 21
> 89 -5 24.9 23.7 n/a n/a n/a 8 25.2 26.4 15 23
> 24
> 90 0.5 26.6 27 n/a n/a n/a 0.05 26 29.7 3 24
> 27
> 91 -0.8 27.3 25.4 n/a n/a n/a 20 23.4 26.3 1.5 25
> n/a
> 92 2 24 25.8 n/a n/a n/a 1 23.7 22.7 1 18
> 22
> 93 -0.1 26 28 n/a n/a n/a -0.01 24.8 27.2 10 21
> 23
> 94 1 26 35 n/a n/a n/a 1 25 25.8 15 21
> 23
> 95 0 25 21.5 n/a n/a n/a 1.5 25.1 25.9 4 22
> 20
> 96 -3 26.9 25.9 n/a n/a n/a 2 25.3 26.6 n/a n/a
> n/a
> 97 1.5 24.1 30.4 n/a n/a n/a 2 25.6 25.5 n/a n/a
> n/a
> 98 1 24.1 24.8 n/a n/a n/a 1.5 25.8 28.5 n/a n/a
> n/a
> 99 10 26.5 28.9 n/a n/a n/a 2 25.9 28 n/a n/a
> n/a
> 100 -0.7 27.5 27.6 n/a n/a n/a 5 29.2 24.2 n/a n/a
> n/a
> 101 -3 28.1 17.6 n/a n/a n/a 1.5 n/a n/a n/a n/a
> n/a
> 102 1 29.7 28.3 n/a n/a n/a 2 n/a n/a n/a n/a
> n/a
> 103 2 24 25.8 n/a n/a n/a 2 n/a n/a n/a n/a
> n/a
> 104 30 28 29 n/a n/a n/a 2 n/a n/a n/a n/a
> n/a
> 105 17 32 36 n/a n/a n/a 1 n/a n/a n/a n/a
> n/a
> 106 8 19.1 23.2 n/a n/a n/a 0.01 30.2 30.4 n/a n/a
> n/a
> 107 5 19.1 23.1 n/a n/a n/a -3 31.6 35.7 n/a n/a
> n/a
> 108 -3 23.7 25.4 n/a n/a n/a 0.01 27.5 25.1 n/a n/a
> n/a
> 109 -2.5 24.1 25.1 n/a n/a n/a -0.02 28.6 31.5 n/a n/a
> n/a
> 110 -2 24.4 26.9 n/a n/a n/a 1 28.6 30.9 n/a n/a
> n/a
> 111 -4 24.6 26.3 n/a n/a n/a 8 30.3 29.7 n/a n/a
> n/a
> 112 0.7 21.3 24.7 n/a n/a n/a -3 26.7 28.4 n/a n/a
> n/a
> 113 -3 21.6 27.6 n/a n/a n/a 4 28.8 28.7 n/a n/a
> n/a
> 114 -2 21 23 n/a n/a n/a 0.5 31.2 31.8 n/a n/a
> n/a
> 115 -0.1 24 20 n/a n/a n/a 8 32.3 38.7 n/a n/a
> n/a
> 116 3 26 21 n/a n/a n/a 0.1 26.4 27 n/a n/a
> n/a
> 117 -0.2 27 24 n/a n/a n/a -2 21.4 25.8 n/a n/a
> n/a
> 118 1 28 28 n/a n/a n/a 3 22.3 25.8 n/a n/a
> n/a
> 119 0.1 24.1 23.1 n/a n/a n/a 7 23 24.1 n/a n/a
> n/a
> 120 3.5 24.5 25 n/a n/a n/a 0.2 24.5 27.1 n/a n/a
> n/a
> 121 0.1 24.6 25.7 n/a n/a n/a 3 25.2 24.1 n/a n/a
> n/a
> 122 3 28 24 n/a n/a n/a -0.5 25.8 28.3 n/a n/a
> n/a
> 123 5 29 28 n/a n/a n/a 0.2 25.8 27.8 n/a n/a
> n/a
> 124 -2 n/a n/a n/a n/a n/a 10 26.3 23.3 n/a n/a
> n/a
> 125 1.5 n/a n/a n/a n/a n/a 20 26.5 24 n/a n/a
> n/a
> 126 3 n/a n/a n/a n/a n/a 3 26.5 24.3 n/a n/a
> n/a
> 127 -0.2 26 24 n/a n/a n/a 3 n/a 27.7 n/a n/a
> n/a
> 128 -0.1 26 22 n/a n/a n/a 2 23.3 n/a n/a n/a
> n/a
> 129 3 19 22 n/a n/a n/a 8 23.9 25.9 n/a n/a
> n/a
> 130 2 21 25 n/a n/a n/a -0.05 24.4 26.7 n/a n/a
> n/a
> 131 1 15 15 n/a n/a n/a -0.1 24.8 25.1 n/a n/a
> n/a
> 132 6 16 18 n/a n/a n/a -0.01 26.2 26.2 n/a n/a
> n/a
> 133 6 18 19 n/a n/a n/a 0.01 26.2 27.6 n/a n/a
> n/a
> 134 -0.2 16 19 n/a n/a n/a 12 27 26.4 n/a n/a
> n/a
> 135 2 17 18.5 n/a n/a n/a 0.1 27.6 28.8 n/a n/a
> n/a
> 136 0.1 17.5 16.5 n/a n/a n/a -1.2 21.1 22.2 n/a n/a
> n/a
> 137 1.5 18 17 n/a n/a n/a -2 21.1 22.4 n/a n/a
> n/a
> 138 -1 18 17 n/a n/a n/a 0.5 21.4 25.4 n/a n/a
> n/a
> 139 8 18 18.5 n/a n/a n/a 1 22.6 24.4 n/a n/a
> n/a
> 140 1.5 19 18.5 n/a n/a n/a 1 25.1 31.4 n/a n/a
> n/a
> 141 5 19 21 n/a n/a n/a 2 25.2 25 n/a n/a
> n/a
> 142 10 19 20 n/a n/a n/a 0.5 25.2 30.2 n/a n/a
> n/a
> 143 8 19 21 n/a n/a n/a 5 22.3 23.5 n/a n/a
> n/a
> 144 6 19 18 n/a n/a n/a 0.1 24.1 23.4 n/a n/a
> n/a
> 145 0 20 20 n/a n/a n/a 1.5 24.1 24 n/a n/a
> n/a
> 146 0.3 12 13 n/a n/a n/a 1 25.2 27.9 n/a n/a
> n/a
> 147 2.5 13 12.5 n/a n/a n/a 5 25.2 27.6 n/a n/a
> n/a
> 148 2 14 16 n/a n/a n/a 1 25.2 29.1 n/a n/a
> n/a
> 149 40 14 12 n/a n/a n/a -1.5 26.5 27 n/a n/a
> n/a
> 150 30 15 16 n/a n/a n/a n/a n/a n/a n/a n/a
> n/a
> 151 40 15.5 16 n/a n/a n/a 0.01 n/a n/a n/a n/a
> n/a
> 152 50 18 12.5 n/a n/a n/a -0.02 n/a n/a n/a n/a
> n/a
> 153 n/a n/a n/a n/a n/a n/a 0.05 n/a n/a n/a n/a
> n/a
> 154 40 14 21 n/a n/a n/a -1 n/a n/a n/a n/a
> n/a
> 155 n/a n/a n/a n/a n/a n/a 0.05 n/a n/a n/a n/a
> n/a
> 156 n/a n/a n/a n/a n/a n/a -10 n/a n/a n/a n/a
> n/a
> 157 n/a n/a n/a n/a n/a n/a 0.1 19.3 19.8 n/a n/a
> n/a
> 158 n/a n/a n/a n/a n/a n/a 0.5 21 26.2 n/a n/a
> n/a
> 159 n/a n/a n/a n/a n/a n/a 1 n/a n/a n/a n/a
> n/a
> 160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
> n/a
> 161 n/a n/a n/a n/a n/a n/a 0.15 22.8 23.3 n/a n/a
> n/a
> 162 n/a n/a n/a n/a n/a n/a 1 24.3 26.5 n/a n/a
> n/a
> 163 n/a n/a n/a n/a n/a n/a 2 24.4 24.6 n/a n/a
> n/a
> 164 n/a n/a n/a n/a n/a n/a 3 15 18.5 n/a n/a
> n/a
> 165 n/a n/a n/a n/a n/a n/a 4 n/a n/a n/a n/a
> n/a
> 166 n/a n/a n/a n/a n/a n/a 15 n/a n/a n/a n/a
> n/a
> 167 n/a n/a n/a n/a n/a n/a 4 n/a n/a n/a n/a
> n/a
> 168 n/a n/a n/a n/a n/a n/a 0.3 n/a n/a n/a n/a
> n/a
> 169 n/a n/a n/a n/a n/a n/a 1.5 n/a n/a n/a n/a
> n/a
> 170 n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a
> n/a
> 171 n/a n/a n/a n/a n/a n/a 3 n/a n/a n/a n/a
> n/a
> 172 n/a n/a n/a n/a n/a n/a 0.1 17 18 n/a n/a
> n/a
> 173 n/a n/a n/a n/a n/a n/a 0.2 17.5 18 n/a n/a
> n/a
> 174 n/a n/a n/a n/a n/a n/a 5 20 21 n/a n/a
> n/a
> 175 n/a n/a n/a n/a n/a n/a 1 10 12 n/a n/a
> n/a
> 176 n/a n/a n/a n/a n/a n/a 2 13.5 12 n/a n/a
> n/a
> 177 n/a n/a n/a n/a n/a n/a 2 12 12 n/a n/a
> n/a
> 178 n/a n/a n/a n/a n/a n/a 2.5 13 15 n/a n/a
> n/a
> 179 n/a n/a n/a n/a n/a n/a 10 12.5 14 n/a n/a
> n/a
>
> I had to give up on this data set, because I wasn't sure how to fix the
> problem, so I've been creating separate text files for all the
combinations
> I'm interested in without the extra n/a's. This is really time
consuming,
> and I know there is probably a simpler way I just don't know what it
is!
>
> I managed to run a lm with just the data in a separate file for gdist and
> gair and I have a few outliers. I've tried to remove them with
g_dist_air2
> <- update(g_dist_air, subset=(gair !=97)), but this doesn't seem to
work.
> > g_dist_temp
> gdist gair
> 1 17.0 32.0
> 2 1.0 29.7
> 3 5.0 29.0
> 4 -3.0 28.1
> 5 30.0 28.0
> 6 1.0 28.0
> 7 3.0 28.0
> 8 -0.7 27.5
> 9 -0.8 27.3
> 10 -0.2 27.0
> 11 -3.0 26.9
> 12 0.5 26.6
> 13 10.0 26.5
> 14 -0.1 26.0
> 15 1.0 26.0
> 16 3.0 26.0
> 17 -0.2 26.0
> 18 -0.1 26.0
> 19 0.2 25.9
> 20 3.5 25.2
> 21 0.0 25.0
> 22 -5.0 24.9
> 23 2.0 24.6
> 24 -4.0 24.6
> 25 0.1 24.6
> 26 3.5 24.5
> 27 -2.0 24.4
> 28 1.5 24.1
> 29 1.0 24.1
> 30 -2.5 24.1
> 31 0.1 24.1
> 32 1.5 24.0
> 33 2.0 24.0
> 34 2.0 24.0
> 35 -0.1 24.0
> 36 -0.3 23.8
> 37 -3.0 23.7
> 38 1.0 23.6
> 39 7.0 23.5
> 40 9.0 23.5
> 41 2.0 23.5
> 42 1.0 23.4
> 43 0.0 23.4
> 44 0.3 23.3
> 45 10.0 23.1
> 46 2.0 22.5
> 47 2.0 22.4
> 48 1.0 22.1
> 49 0.7 22.0
> 50 -3.0 21.6
> 51 0.2 21.5
> 52 0.7 21.3
> 53 10.0 21.1
> 54 3.0 21.1
> 55 15.0 21.0
> 56 -2.0 21.0
> 57 2.0 21.0
> 58 0.0 20.8
> 59 8.0 20.6
> 60 -0.3 20.4
> 61 -3.0 20.4
> 62 5.0 20.2
> 63 2.0 20.0
> 64 3.0 20.0
> 65 15.0 20.0
> 66 0.0 20.0
> 67 3.0 19.7
> 68 1.0 19.7
> 69 0.5 19.6
> 70 8.0 19.6
> 71 5.0 19.6
> 72 6.0 19.4
> 73 1.0 19.4
> 74 5.0 19.4
> 75 0.1 19.1
> 76 8.0 19.1
> 77 5.0 19.1
> 78 2.0 19.0
> 79 2.0 19.0
> 80 1.5 19.0
> 81 1.5 19.0
> 82 0.3 19.0
> 83 0.2 19.0
> 84 3.0 19.0
> 85 1.5 19.0
> 86 5.0 19.0
> 87 10.0 19.0
> 88 8.0 19.0
> 89 6.0 19.0
> 90 1.5 18.9
> 91 1.0 18.8
> 92 12.0 18.7
> 93 6.0 18.0
> 94 1.5 18.0
> 95 -1.0 18.0
> 96 8.0 18.0
> 97 50.0 18.0
> 98 5.0 17.8
> 99 -2.0 17.7
> 100 0.1 17.5
> 101 7.0 17.4
> 102 5.0 17.2
> 103 7.0 17.2
> 104 -0.1 17.1
> 105 6.0 17.0
> 106 6.0 17.0
> 107 2.0 17.0
> 108 2.0 17.0
> 109 1.0 16.9
> 110 0.1 16.6
> 111 0.2 16.3
> 112 10.0 16.1
> 113 6.0 16.0
> 114 -0.2 16.0
> 115 40.0 15.5
> 116 8.0 15.4
> 117 1.0 15.0
> 118 30.0 15.0
> 119 5.0 14.9
> 120 6.0 14.9
> 121 2.5 14.9
> 122 3.5 14.8
> 123 1.0 14.7
> 124 15.0 14.4
> 125 0.0 14.2
> 126 1.5 14.2
> 127 5.0 14.0
> 128 2.0 14.0
> 129 40.0 14.0
> 130 40.0 14.0
> 131 4.0 13.9
> 132 -0.5 13.6
> 133 4.0 13.0
> 134 10.0 13.0
> 135 2.5 13.0
> 136 3.0 12.7
> 137 0.0 12.7
> 138 30.0 12.6
> 139 40.0 12.6
> 140 0.3 12.0
> 141 15.0 11.5
> 142 0.5 11.2
> 143 2.5 8.4
> 144 1.0 8.1
> 145 20.0 8.0
> 146 40.0 2.0
>
> Are there any other ways to remove lines from data sets? Or is there
> something wrong with my code?
>
> Is there anyway to use my old data set with all the n/a's to look at
> relationships between the variables? Ideally I want to add in more habitat
> variables to this analysis, that will include some categorical data and
> more
> n/a's since the data collection was not complete with every
observation.
>
> Any help is appreciated.
>
> Tara
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
>
http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
>
--
Joshua Wiley
Senior in Psychology
University of California, Riverside
http://www.joshuawiley.com/
[[alternative HTML version deleted]]