Not glm, it should be glmer in lme4 package.
Ronggui
On 22 March 2010 22:31, Ren? Mayer <mayer at psychologie.tu-dresden.de>
wrote:> Dear R community,
>
> I've data-set with reaction times and count data (answers - yes, no) of
N
> subjects under conditions A, B.
> For the analysis reaction time I used aov.
>
> fit.rt = aov(rt ~ A * B + Error(subjects/(A*B)), data = m )
>
> But how do I analyze the frequencies correctly?
>
> example fable of frequencies from one subject:
>
> , , = A1
>
> ? ? ? ?B1 ? ? ?B2 ? ? ?B3
> ?yes ? 31 ? ? 36 ? ?19
> ?no ? ?22 ? ? 27 ? ?10
> , , ?= A2
>
> ? ? ?B1 ? ? ? B2 ? ?B3
> ?yes ? 22 ? ? 27 ? ?10
> ?no ? ?31 ? ? 36 ? ?19
>
> Is a generalized linear model the right method?
> How do I specify the same model for the count data (frequencies) in glm?
>
> is this right: glm(count~A*B*answer+(1|subject),family=poisson)?
>
> Regards, Ren?
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Wincent Ronggui HUANG
Doctoral Candidate
Dept of Public and Social Administration
City University of Hong Kong
http://asrr.r-forge.r-project.org/rghuang.html