Dear r-helpers, I estimated a generalized additive model (GAM) using Hastie's package GAM. Example: gam1 <- gam(vegetation ~ s(slope), family = binomial, data=aufnahmen_0708, trace=TRUE) pred <- predict(gam1, type = "response") vegetation is a categorial, slope a numerical variable. Now I want to assess the accurancy of the model using k-fold cross validation. I found the package Daim with function Daim for estimation of prediction error based on cross-validation (CV) or various bootstrap techniques. But I am not able to run it properly. I tried the following 3 versions: 1. accurancy <- Daim (vegetation ~ s(slope), model=gam1, data=aufnahmen_0708, labpos="alpine mats") --> error: could not find function "model" 2. accurancy <- Daim (vegetation ~ s(slope), model=gam, data=aufnahmen_0708, labpos="alpine mats") --> error in model(formula, train, test) : `family' not recognized 3. accurancy <- Daim (vegetation ~ s(slope), model=gam(family=binomial), data=aufnahmen_0708, labpos="alpine mats") --> error in environment(formula) : Element 1 is empty; Der Teil der Argumentliste '.Internal' der berechnet wurde war: (fun) Can anybody help me? Any advice is greatly appreciated! Thanks Kim -- Jetzt kostenlos herunterladen: Internet Explorer 8 und Mozilla Firefox 3.5 - sicherer, schneller und einfacher! http://portal.gmx.net/de/go/atbrowser