Dear R-helpers, I'd like to use glmmPQL to predict binary responses based on a data.frame data1 containing N entries (N<1000): target covariate1 covariate2 covariate3 ... covariateM cluster 134131 1 -0.30031885 0 0 -2.886870e-07 1 38370 1 -0.04883229 0 1 -1.105720e-07 1 19315 1 -0.11084267 0 0 6.362602e-07 1 33806 1 -0.14529289 0 0 -1.361914e-07 1 154332 1 -0.07983748 0 1 -7.635439e-07 1 ... 17228 0 -0.49668507 0 1 -2.954118e-07 1 41147 0 -0.32787902 0 1 -1.502238e-06 1 104213 0 0.17164908 0 0 -2.119738e-06 1 28071 0 -2.08828495 0 0 -7.640990e-07 1 91 0 1.47042214 0 0 -5.661632e-07 1 The responses are in column "target", and there are M covariates. All observations belong to cluster 1. The data is to be modelled without fixed effects, i.e., a by a zero-mean random effects model. Additionally, the model is to be fed with a correlation structure (to avoid double entries, a column x<-rnorm(nrow(data1),0,0.000001) is appended): correlation=corGaus(form=~covariate1 + covariate2 + ... +covariateM + x, nugget=FALSE) The data is visible to glmmPQL: attach(data1) Is glmmPQLm<-glmmPQL(target~0,random=~1|cluster, data=data1, correlation=corGaus(form=~covariate1 + covariate2 + ... +covariateM + x, nugget=FALSE), family="binomial") the right expression to fit the model ? Thanks, Don Muang [[alternative HTML version deleted]]