Gosselin Frederic
2009-Nov-20 08:36 UTC
[R] different results across versions for glmer/lmer with the quasi-poisson or quasi-binomial families: the lattest version might not be accurate...
Dear R-helpers, this mail is intended to mention a rather trange result and generate potential useful comments on it. I am not aware of another posts on this issue ( RSiteSearch("quasipoisson lmer version dispersion")). MUsing the exemple in the reference of the lmer function (in lme4 library) and turning it into a quasi-poisson or quasi-binomial analysis, we get different results, especially for the dispersion parameter (section 1 in the following; cf. bold passages in the following). For the quasi-poisson, we found even stronger differences with another, bigger database on which we worked (residual variance from approx. 0.7 to 1.2). We also tested the differences between versions for plain likelihood families (poisson and binomial): the differences were slighter, and were actually very small in the case of the poisson family. My first reaction was that the later version should have been better. However, the quasibinomial results of this version are rather strange. Therefore, I simulated a bigger data set corresponding to Poisson and binomial mixed models (section 2 in the following). I actually found out that the later version of lme4 was suspect but not the old one. My temptative conclusion is therefore to use the old versions of lme4 (here: lme4 version 0.99875-9) when using quasi-binomial and quasi-poisson methods. Any comment/insight appreciated. All the best, Frédéric Gosselin Engineer & Researcher (PhD) in Forest Ecology Cemagref Domaine des Barres F-45290 Nogent sur Vernisson France ############### 1- EXAMPLE FROM LMER HELP ############# here are the commands for the quasipoisson: library(lme4) gm1 <- lmer(incidence ~ period + (1 | herd), family = quasipoisson, data = cbpp) summary(gm1) ########## here is the result under R2.5.1 and Package lme4 version 0.99875-9: Generalized linear mixed model fit using Laplace Formula: incidence ~ period + (1 | herd) Data: cbpp Family: quasipoisson(log link) AIC BIC logLik deviance 112.2 122.3 -51.11 102.2 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.35085 0.59233 Residual 1.40470 1.18520 number of obs: 56, groups: herd, 15 Fixed effects: Estimate Std. Error t value (Intercept) 1.2812 0.2200 5.824 period2 -1.1240 0.3315 -3.391 period3 -1.3203 0.3579 -3.689 period4 -1.9477 0.4808 -4.051 Correlation of Fixed Effects: (Intr) perid2 perid3 period2 -0.339 period3 -0.314 0.219 period4 -0.233 0.163 0.151 #############" here is the result on R2.7.1 and Package lme4 version 0.999375-26 Generalized linear mixed model fit by the Laplace approximation Formula: incidence ~ period + (1 | herd) Data: cbpp AIC BIC logLik deviance 114.2 126.4 -51.1 102.2 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.32421 0.56939 Residual 1.29474 1.13786 Number of obs: 56, groups: herd, 15 Fixed effects: Estimate Std. Error t value (Intercept) 1.2762 0.2115 6.035 period2 -1.1249 0.3187 -3.530 period3 -1.3190 0.3438 -3.837 period4 -1.9450 0.4615 -4.215 Correlation of Fixed Effects: (Intr) perid2 perid3 period2 -0.339 period3 -0.314 0.219 period4 -0.233 0.163 0.151 ############# now the commands for the quasibinomial: library(lme4) toto<-as.double(cbpp$incidence>0) gm2 <- lmer(toto ~ period + (1 | herd), family = quasibinomial, data = cbpp) summary(gm2) ########## here is the result under R2.5.1 and Package lme4 version 0.99875-9: Generalized linear mixed model fit using Laplace Formula: toto ~ period + (1 | herd) Data: cbpp Family: quasibinomial(logit link) AIC BIC logLik deviance 72.04 82.17 -31.02 62.04 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 5.0259e-10 2.2418e-05 Residual 1.0052e+00 1.0026e+00 number of obs: 56, groups: herd, 15 Fixed effects: Estimate Std. Error t value (Intercept) 2.662 1.048 2.540 period2 -2.078 1.188 -1.750 period3 -2.950 1.180 -2.501 period4 -3.135 1.194 -2.626 Correlation of Fixed Effects: (Intr) perid2 perid3 period2 -0.882 period3 -0.888 0.784 period4 -0.878 0.775 0.780 ############# here is the result on R2.7.1 and Package lme4 version 0.999375-26 Generalized linear mixed model fit by the Laplace approximation Formula: toto ~ period + (1 | herd) Data: cbpp AIC BIC logLik deviance 74.04 86.2 -31.02 62.04 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.00000 0.00000 Residual 0.13522 0.36772 Number of obs: 56, groups: herd, 15 Fixed effects: Estimate Std. Error t value (Intercept) 2.6391 0.3806 6.933 period2 -2.0513 0.4324 -4.744 period3 -2.9267 0.4293 -6.817 period4 -3.1091 0.4345 -7.155 Correlation of Fixed Effects: (Intr) perid2 perid3 period2 -0.880 period3 -0.887 0.780 period4 -0.876 0.771 0.777 ############### 2- SIMULATED EXAMPLE ############# here are the commands both for the quasibinomial and quasipoisson: library(lme4) set.seed(1) period<-rnorm(1000) herd<-rep(1:50,eac=20) herd.effect<-rnorm(50) toto<-rbinom(1000,1,exp(period+herd.effect[herd])/(1+exp(period+herd.effect[herd]))) gm2s <- lmer(toto ~ period + (1 | herd), family = quasibinomial) summary(gm2s) gm2sL <- lmer(toto ~ period + (1 | herd), family = binomial) summary(gm2sL) #now poisson with similar data: #essai avec jeu de données simulé: set.seed(2) toto<-rpois(1000,exp(period+herd.effect[herd])) gm1s <- lmer(toto ~ period + (1 | herd), family = quasipoisson) summary(gm1s) gm1sL <- lmer(toto ~ period + (1 | herd), family = poisson) summary(gm1sL) ########## here is the quasi-poisson result under R2.5.1 and Package lme4 version 0.99875-9: (all is OK) Generalized linear mixed model fit using Laplace Formula: toto ~ period + (1 | herd) Family: quasipoisson(log link) AIC BIC logLik deviance 1151 1166 -572.7 1145 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.83605 0.91436 Residual 0.97980 0.98985 number of obs: 1000, groups: herd, 50 Fixed effects: Estimate Std. Error t value (Intercept) 0.02775 0.13419 0.21 period 0.97424 0.02291 42.52 Correlation of Fixed Effects: (Intr) period -0.157 ############# here is the quasipoisson result on R2.7.1 and Package lme4 version 0.999375-26: the variance estimates are suspect Generalized linear mixed model fit by the Laplace approximation Formula: toto ~ period + (1 | herd) AIC BIC logLik deviance 1153 1173 -572.7 1145 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.35305 0.59418 Residual 0.41370 0.64320 Number of obs: 1000, groups: herd, 50 Fixed effects: Estimate Std. Error t value (Intercept) 0.02757 0.08720 0.32 period 0.97423 0.01489 65.44 Correlation of Fixed Effects: (Intr) period -0.157 ########## here is the quasi-binomial result under R2.5.1 and Package lme4 version 0.99875-9: (all is OK) Generalized linear mixed model fit using Laplace Formula: toto ~ period + (1 | herd) Family: quasibinomial(logit link) AIC BIC logLik deviance 1145 1160 -569.6 1139 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.85697 0.92573 Residual 0.94584 0.97254 number of obs: 1000, groups: herd, 50 Fixed effects: Estimate Std. Error t value (Intercept) -0.05493 0.14949 -0.367 period 1.02879 0.08360 12.306 Correlation of Fixed Effects: (Intr) period -0.001 ############# here is the quasi-binomial result on R2.7.1 and Package lme4 version 0.999375-26: the variance estimates are very suspect Generalized linear mixed model fit by the Laplace approximation Formula: toto ~ period + (1 | herd) AIC BIC logLik deviance 1147 1167 -569.6 1139 Random effects: Groups Name Variance Std.Dev. herd (Intercept) 0.12520 0.35384 Residual 0.13819 0.37173 Number of obs: 1000, groups: herd, 50 Fixed effects: Estimate Std. Error t value (Intercept) -0.05503 0.05714 -0.96 period 1.03117 0.03199 32.24 Correlation of Fixed Effects: (Intr) [[alternative HTML version deleted]]
Ben Bolker
2009-Nov-20 13:05 UTC
[R] different results across versions for glmer/lmer with the quasi-poisson or quasi-binomial families: the lattest version might not be accurate...
Gosselin Frederic <frederic.gosselin <at> cemagref.fr> writes:> > Dear R-helpers, > > this mail is intended to mention a rather trange result and > generate potential useful comments on it. I am > not aware of another posts on this issue > ( RSiteSearch("quasipoisson lmer version dispersion")). >[snip snip] I would definitely forward this to r-sig-mixed-models at lists.r-project.org, if I were you. At one point I reported what may be the same bug; http://tinyurl.com/ye3pkve I don't know when it appeared and when it was fixed, so I don't know whether it explains your results or not.