Dear All, I am running an ANOVA model with three factors: FEATURE (3 levels), GROUP (5 levels), and PATIENT (2 levels), where PATIENT is nested within GROUP. fit <- lm(ABUNDANCE ~ FEATURE + GROUP + FEATURE:GROUP + GROUP/PATIENT, example) However, the design is not balanced: PATIENT1 in GROUP1 is missing, and when I run summary(fit), I receive the following output. Call: lm(formula = ABUNDANCE ~ FEATURE + GROUP + FEATURE:GROUP + GROUP/ PATIENT, data = example) Residuals: Min 1Q Median 3Q Max -3.569e-01 -1.048e-01 1.479e-17 1.048e-01 3.569e-01 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 13.4542954 0.2790175 48.220 3.78e-11 *** FEATURE4227 -0.9393679 0.3417252 -2.749 0.0251 * FEATURE6374 0.1260711 0.3417252 0.369 0.7218 GROUP1 0.0020501 0.4411653 0.005 0.9964 GROUP2 0.0992019 0.3945903 0.251 0.8078 GROUP3 0.0823760 0.3945903 0.209 0.8399 GROUP4 -0.0062425 0.3945903 -0.016 0.9878 FEATURE4227:GROUP1 -0.2178760 0.5918854 -0.368 0.7223 FEATURE6374:GROUP1 -0.1109533 0.5918854 -0.187 0.8560 FEATURE4227:GROUP2 0.0001341 0.4832724 0.000278 0.9998 FEATURE6374:GROUP2 0.2720569 0.4832724 0.563 0.5889 FEATURE4227:GROUP3 0.3848577 0.4832724 0.796 0.4488 FEATURE6374:GROUP3 0.1829045 0.4832724 0.378 0.7149 FEATURE4227:GROUP4 -0.7113272 0.4832724 -1.472 0.1793 FEATURE6374:GROUP4 -0.1151362 0.4832724 -0.238 0.8177 GROUP0:PATIENT2 0.1264295 0.2790175 0.453 0.6625 GROUP1:PATIENT2 NA NA NA NA GROUP2:PATIENT2 -0.2636043 0.2790175 -0.945 0.3724 GROUP3:PATIENT2 0.0429295 0.2790175 0.154 0.8815 GROUP4:PATIENT2 0.5981179 0.2790175 2.144 0.0644 . --- As you can see, the estimate for GROUP1:PATIENT2 is NA because of the missing values from PATIENT1 in GROUP1. This becomes a problem when I want to estimate contrasts, as the estimable function gives me an error. Is there a way to get around this? When running the same model in SAS, instead of an NA there is simply a 0 for that level, and contrasts have no problem being estimated. Sincerely, Tim