dear R-users, I am trying to understand what is the sigma parameter returner by glmer I thought it was (an estimate of) the sigma parameter defined by Mc Cullagh & Nelder (e.g. p 126 of 2nd edition) but I ran some simulations and it seems that this is something else. I simulated data corresponding to a binomial model, intended to be fitted by this command: glmer(cbind(success,failure)~X+(1|group),family=binomial) but I instead fitted the following model: glmer(cbind(success,failure)~X+(1|group),family=quasibinomial) (and repeated this process 500 times) I expected sigma to be close to 1 but I found that the mean sigma was about 0.05 (sd = 0.003) If I do the analogous simulation study with glm, that is, I simulate binomial data and fit them with family=quasibinomial instead of binomial, I find a mean dispersion parameter = 0.9999 (sd=0.09). changing parameters values does not alter this pattern. In both cases, the fixed effects parameters are correctly estimated. here is the function I used to simulate data (taking 0 as the standard deviation <sigmag> of random effect provides data suitable to glm) function(x,theta,sigmag,nb.groups=10,size=50) #----------------------------- # sim.data.mixed #----------------------------- # simulates data for glmer # Y is Binom(p,size) # with logit(p) = theta1 + theta2*X + B # where B is Norm(0,sigmag) #----------------------------- # x : the x values (same for each group) # length(x) is the number of observations per group # theta: the fixed effects parameters (intercept & slope) # sigmag : the random effects standard deviation # size : the binomial parameter (same for everybody) { group<-rep(1:nb.groups,rep(length(x),nb.groups)) random.effect<-rnorm(nb.groups,mean=0,sd=sigmag) xmat<-expand.grid(x,random.effect) eta<-theta[1]+theta[2]*xmat[,1]+xmat[,2] y<-rbinom(length(eta),size=size,prob=invlogit(eta)) return(data.frame(success=y,failure=size-y,x=xmat[,1],group=group,b=xmat[,2])) #------------------------------ # b (random effects) is returned here but not used by glmer }