Strubbe Diederik
2009-Apr-13 20:34 UTC
[R] Question on zero-inflated Poisson count data with repeated measures design - glmm.ADMB
Dear R community, I have some questions regarding the analysis of a zero-inflated count dataset and repeated measures design. The dataset is arranged as follows : Unit of analysis: point - these are points were bird were counted during a certain amount of time. In total we have about 175 points. Each point is located within a certain habitat fragment (here: "site"= A-B-C-D-..., in reality we have 25 sites,i.e. forest fragments). All points were counted five times during three years ( thus in total, each point was counted 15 times). We want to relate the bird abundance to a number of habitat variables (here: X1-X2-X3) collected at the site level. Abundance: this is the number of birds counted at a point. In most cases ( > 90%), no birds were detected and the abundance dataset is thus zero-inflated. I have been looking for a code to analyze this zero-inflated poisson distributed dataset with a repeated measures design, and I have arrived at the glmmADMB package. library(glmmADMB) data <- read.table("D:/Boris/Borisdataset.csv",sep=",",header=TRUE) count <- data$count site <- data$site abundance <- data$abundance test<-glmm.admb(abundance~data$X1+data$X2+data$year,random=~count,group="site",data=data,family="poisson",zeroInflation=TRUE) [ for clarity: in the above syntax: count ranges from 1-5 as each site has been counted 5 times in a year, site refers to one of the 25 forest fragments in which the point counts were conducted, Xi are the habitat variables]. My questions are: - does it make sense to analyze these data at the point level, as all habitat variables are collected at the site level, meaning that for all points belonging to a certain forest fragment, the habitat variables have the same value. If it does make sense, is the proposed syntax ok? Is there any option to include year as a random effect, as I am not especially interested in differences between years. -it looks appealing to average the point count values for each forest fragment, and to analyze the data with "forest fragment" as unit of analysis. However, also when averaging across fragments, the dataset is still zero-inflated. It is however impossible to a zero-inflated Poisson distribution for this analysis, as the averaged forest fragment values are not always discrete values. Many thanks in advance, Diederik {example of dataset reproduced below....} X1 X2 X3 point site count year abundance 1.23598 0.277765 0.861794 1 A 1 2001 0 1.23598 0.277765 0.861794 1 A 2 2001 0 1.23598 0.277765 0.861794 1 A 3 2001 6 1.23598 0.277765 0.861794 1 A 4 2001 10 1.23598 0.277765 0.861794 1 A 5 2001 0 1.23598 0.277765 0.861794 2 A 1 2001 0 1.23598 0.277765 0.861794 2 A 2 2001 0 1.23598 0.277765 0.861794 2 A 3 2001 0 1.23598 0.277765 0.861794 2 A 4 2001 0 1.23598 0.277765 0.861794 2 A 5 2001 0 1.23598 0.277765 0.861794 3 A 1 2001 9 1.23598 0.277765 0.861794 3 A 2 2001 3 1.23598 0.277765 0.861794 3 A 3 2001 5 1.23598 0.277765 0.861794 3 A 4 2001 0 1.23598 0.277765 0.861794 3 A 5 2001 0 1.23598 0.277765 0.861794 1 A 1 2002 9 1.23598 0.277765 0.861794 1 A 2 2002 0 1.23598 0.277765 0.861794 1 A 3 2002 0 1.23598 0.277765 0.861794 1 A 4 2002 0 1.23598 0.277765 0.861794 1 A 5 2002 0 1.23598 0.277765 0.861794 2 A 1 2002 0 1.23598 0.277765 0.861794 2 A 2 2002 0 1.23598 0.277765 0.861794 2 A 3 2002 0 1.23598 0.277765 0.861794 2 A 4 2002 0 1.23598 0.277765 0.861794 2 A 5 2002 0 1.23598 0.277765 0.861794 3 A 1 2002 0 1.23598 0.277765 0.861794 3 A 2 2002 0 1.23598 0.277765 0.861794 3 A 3 2002 0 1.23598 0.277765 0.861794 3 A 4 2002 0 1.23598 0.277765 0.861794 3 A 5 2002 0 1.23598 0.277765 0.861794 1 A 1 2003 5 1.23598 0.277765 0.861794 1 A 2 2003 5 1.23598 0.277765 0.861794 1 A 3 2003 0 1.23598 0.277765 0.861794 1 A 4 2003 0 1.23598 0.277765 0.861794 1 A 5 2003 0 1.23598 0.277765 0.861794 2 A 1 2003 0 1.23598 0.277765 0.861794 2 A 2 2003 0 1.23598 0.277765 0.861794 2 A 3 2003 0 1.23598 0.277765 0.861794 2 A 4 2003 6 1.23598 0.277765 0.861794 2 A 5 2003 4 1.23598 0.277765 0.861794 3 A 1 2003 0 1.23598 0.277765 0.861794 3 A 2 2003 0 1.23598 0.277765 0.861794 3 A 3 2003 9 1.23598 0.277765 0.861794 3 A 4 2003 0 1.23598 0.277765 0.861794 3 A 5 2003 0 0.47955 0.403671 0.980391 1 B 1 2001 0 0.47955 0.403671 0.980391 1 B 2 2001 0 0.47955 0.403671 0.980391 1 B 3 2001 0 0.47955 0.403671 0.980391 1 B 4 2001 0 0.47955 0.403671 0.980391 1 B 5 2001 9 0.47955 0.403671 0.980391 2 B 1 2001 1 0.47955 0.403671 0.980391 2 B 2 2001 9 0.47955 0.403671 0.980391 2 B 3 2001 0 0.47955 0.403671 0.980391 2 B 4 2001 0 0.47955 0.403671 0.980391 2 B 5 2001 0 0.47955 0.403671 0.980391 3 B 1 2001 0 0.47955 0.403671 0.980391 3 B 2 2001 0 0.47955 0.403671 0.980391 3 B 3 2001 0 0.47955 0.403671 0.980391 3 B 4 2001 7 0.47955 0.403671 0.980391 3 B 5 2001 0 0.47955 0.403671 0.980391 1 B 1 2002 0 0.47955 0.403671 0.980391 1 B 2 2002 0 0.47955 0.403671 0.980391 1 B 3 2002 0 0.47955 0.403671 0.980391 1 B 4 2002 1 0.47955 0.403671 0.980391 1 B 5 2002 0 0.47955 0.403671 0.980391 2 B 1 2002 0 0.47955 0.403671 0.980391 2 B 2 2002 0 0.47955 0.403671 0.980391 2 B 3 2002 0 0.47955 0.403671 0.980391 2 B 4 2002 6 0.47955 0.403671 0.980391 2 B 5 2002 0 0.47955 0.403671 0.980391 3 B 1 2002 0 0.47955 0.403671 0.980391 3 B 2 2002 5 0.47955 0.403671 0.980391 3 B 3 2002 0 0.47955 0.403671 0.980391 3 B 4 2002 2 0.47955 0.403671 0.980391 3 B 5 2002 0 0.47955 0.403671 0.980391 1 B 1 2003 0 0.47955 0.403671 0.980391 1 B 2 2003 0 0.47955 0.403671 0.980391 1 B 3 2003 0 0.47955 0.403671 0.980391 1 B 4 2003 0 0.47955 0.403671 0.980391 1 B 5 2003 0 0.47955 0.403671 0.980391 2 B 1 2003 0 0.47955 0.403671 0.980391 2 B 2 2003 0 0.47955 0.403671 0.980391 2 B 3 2003 0 0.47955 0.403671 0.980391 2 B 4 2003 0 0.47955 0.403671 0.980391 2 B 5 2003 0 0.47955 0.403671 0.980391 3 B 1 2003 0 0.47955 0.403671 0.980391 3 B 2 2003 0 0.47955 0.403671 0.980391 3 B 3 2003 0 0.47955 0.403671 0.980391 3 B 4 2003 0 0.47955 0.403671 0.980391 3 B 5 2003 0 0.036829 0.49832 0.906583 1 C 1 2001 0 0.036829 0.49832 0.906583 1 C 2 2001 0 0.036829 0.49832 0.906583 1 C 3 2001 0 0.036829 0.49832 0.906583 1 C 4 2001 9 0.036829 0.49832 0.906583 1 C 5 2001 0 0.036829 0.49832 0.906583 2 C 1 2001 0 0.036829 0.49832 0.906583 2 C 2 2001 0 0.036829 0.49832 0.906583 2 C 3 2001 0 0.036829 0.49832 0.906583 2 C 4 2001 0 0.036829 0.49832 0.906583 2 C 5 2001 6 0.036829 0.49832 0.906583 3 C 1 2001 0 0.036829 0.49832 0.906583 3 C 2 2001 0 0.036829 0.49832 0.906583 3 C 3 2001 0 0.036829 0.49832 0.906583 3 C 4 2001 0 0.036829 0.49832 0.906583 3 C 5 2001 8 0.036829 0.49832 0.906583 1 C 1 2002 0 0.036829 0.49832 0.906583 1 C 2 2002 0 0.036829 0.49832 0.906583 1 C 3 2002 7 0.036829 0.49832 0.906583 1 C 4 2002 0 0.036829 0.49832 0.906583 1 C 5 2002 0 0.036829 0.49832 0.906583 2 C 1 2002 0 0.036829 0.49832 0.906583 2 C 2 2002 3 0.036829 0.49832 0.906583 2 C 3 2002 0 0.036829 0.49832 0.906583 2 C 4 2002 0 0.036829 0.49832 0.906583 2 C 5 2002 0 0.036829 0.49832 0.906583 3 C 1 2002 0 0.036829 0.49832 0.906583 3 C 2 2002 0 0.036829 0.49832 0.906583 3 C 3 2002 0 0.036829 0.49832 0.906583 3 C 4 2002 0 0.036829 0.49832 0.906583 3 C 5 2002 0 0.036829 0.49832 0.906583 1 C 1 2003 0 0.036829 0.49832 0.906583 1 C 2 2003 0 0.036829 0.49832 0.906583 1 C 3 2003 6 0.036829 0.49832 0.906583 1 C 4 2003 0 0.036829 0.49832 0.906583 1 C 5 2003 0 0.036829 0.49832 0.906583 2 C 1 2003 7 0.036829 0.49832 0.906583 2 C 2 2003 0 0.036829 0.49832 0.906583 2 C 3 2003 2 0.036829 0.49832 0.906583 2 C 4 2003 9 0.036829 0.49832 0.906583 2 C 5 2003 0 0.036829 0.49832 0.906583 3 C 1 2003 0 0.036829 0.49832 0.906583 3 C 2 2003 0 0.036829 0.49832 0.906583 3 C 3 2003 0 0.036829 0.49832 0.906583 3 C 4 2003 0 0.036829 0.49832 0.906583 3 C 5 2003 0 1.23598 0.129 1.30048 1 D 1 2001 0 1.23598 0.129 1.30048 1 D 2 2001 0 1.23598 0.129 1.30048 1 D 3 2001 6 1.23598 0.129 1.30048 1 D 4 2001 10 1.23598 0.129 1.30048 1 D 5 2001 0 1.23598 0.129 1.30048 2 D 1 2001 0 1.23598 0.129 1.30048 2 D 2 2001 0 1.23598 0.129 1.30048 2 D 3 2001 0 1.23598 0.129 1.30048 2 D 4 2001 12 1.23598 0.129 1.30048 2 D 5 2001 0 1.23598 0.129 1.30048 3 D 1 2001 9 1.23598 0.129 1.30048 3 D 2 2001 3 1.23598 0.129 1.30048 3 D 3 2001 5 1.23598 0.129 1.30048 3 D 4 2001 1 1.23598 0.129 1.30048 3 D 5 2001 0 1.23598 0.129 1.30048 1 D 1 2002 9 1.23598 0.129 1.30048 1 D 2 2002 2 1.23598 0.129 1.30048 1 D 3 2002 0 1.23598 0.129 1.30048 1 D 4 2002 3 1.23598 0.129 1.30048 1 D 5 2002 0 1.23598 0.129 1.30048 2 D 1 2002 0 1.23598 0.129 1.30048 2 D 2 2002 0 1.23598 0.129 1.30048 2 D 3 2002 0 1.23598 0.129 1.30048 2 D 4 2002 0 1.23598 0.129 1.30048 2 D 5 2002 0 1.23598 0.129 1.30048 3 D 1 2002 0 1.23598 0.129 1.30048 3 D 2 2002 0 1.23598 0.129 1.30048 3 D 3 2002 0 1.23598 0.129 1.30048 3 D 4 2002 0 1.23598 0.129 1.30048 3 D 5 2002 0 1.23598 0.129 1.30048 1 D 1 2003 5 1.23598 0.129 1.30048 1 D 2 2003 5 1.23598 0.129 1.30048 1 D 3 2003 0 1.23598 0.129 1.30048 1 D 4 2003 0 1.23598 0.129 1.30048 1 D 5 2003 0 1.23598 0.129 1.30048 2 D 1 2003 0 1.23598 0.129 1.30048 2 D 2 2003 0 1.23598 0.129 1.30048 2 D 3 2003 0 1.23598 0.129 1.30048 2 D 4 2003 6 1.23598 0.129 1.30048 2 D 5 2003 4 1.23598 0.129 1.30048 3 D 1 2003 0 0.418671 0.087187 0.504914 1 E 1 2001 0 0.418671 0.087187 0.504914 1 E 2 2001 0 0.418671 0.087187 0.504914 1 E 3 2001 6 0.418671 0.087187 0.504914 1 E 4 2001 10 0.418671 0.087187 0.504914 1 E 5 2001 0 0.418671 0.087187 0.504914 2 E 1 2001 0 0.418671 0.087187 0.504914 2 E 2 2001 0 0.418671 0.087187 0.504914 2 E 3 2001 0 0.418671 0.087187 0.504914 2 E 4 2001 0 0.418671 0.087187 0.504914 2 E 5 2001 0 0.418671 0.087187 0.504914 3 E 1 2001 9 0.418671 0.087187 0.504914 3 E 2 2001 3 0.418671 0.087187 0.504914 3 E 3 2001 5 0.418671 0.087187 0.504914 3 E 4 2001 0 0.418671 0.087187 0.504914 3 E 5 2001 0 0.418671 0.087187 0.504914 1 E 1 2002 9 0.418671 0.087187 0.504914 1 E 2 2002 0 0.418671 0.087187 0.504914 1 E 3 2002 0 0.418671 0.087187 0.504914 1 E 4 2002 0 0.418671 0.087187 0.504914 1 E 5 2002 0 0.418671 0.087187 0.504914 2 E 1 2002 0 0.418671 0.087187 0.504914 2 E 2 2002 0 0.418671 0.087187 0.504914 2 E 3 2002 0 0.418671 0.087187 0.504914 2 E 4 2002 0 0.418671 0.087187 0.504914 2 E 5 2002 0 0.418671 0.087187 0.504914 3 E 1 2002 0 0.418671 0.087187 0.504914 3 E 2 2002 0 0.418671 0.087187 0.504914 3 E 3 2002 0 0.418671 0.087187 0.504914 3 E 4 2002 0 0.418671 0.087187 0.504914 3 E 5 2002 0 0.418671 0.087187 0.504914 1 E 1 2003 5 0.418671 0.087187 0.504914 1 E 2 2003 5 0.418671 0.087187 0.504914 1 E 3 2003 0 0.418671 0.087187 0.504914 1 E 4 2003 0 0.418671 0.087187 0.504914 1 E 5 2003 0 0.418671 0.087187 0.504914 2 E 1 2003 0 0.418671 0.087187 0.504914 2 E 2 2003 0 0.418671 0.087187 0.504914 2 E 3 2003 0 0.418671 0.087187 0.504914 2 E 4 2003 6 0.418671 0.087187 0.504914 2 E 5 2003 4 0.418671 0.087187 0.504914 3 E 1 2003 0 0.418671 0.087187 0.504914 3 E 2 2003 0 0.418671 0.087187 0.504914 3 E 3 2003 9 0.418671 0.087187 0.504914 3 E 4 2003 0 0.418671 0.087187 0.504914 3 E 5 2003 0 Diederik Strubbe Evolutionary Ecology Group Department of Biology, University of Antwerp Universiteitsplein 1 B-2610 Antwerp, Belgium http://webhost.ua.ac.be/deco tel : 32 3 820 23 85 [[alternative HTML version deleted]]
David Winsemius
2009-Apr-14 12:12 UTC
[R] Question on zero-inflated Poisson count data with repeated measures design - glmm.ADMB
Strubbe Diederik <diederik.strubbe <at> ua.ac.be> writes:> > Dear R community, > > I have some questions regarding the analysis of a zero-inflated countdataset and repeated measures design.> > The dataset is arranged as follows : > Unit of analysis: point - these are points were bird were counted during acertain amount of time. In total we have about 175 points. Each point is located within a certain habitat fragment (here: "site" > A-B-C-D-..., in reality we have 25 sites,i.e. forest fragments). All points were counted five times> during three years ( thus in total, each point was counted 15 times). We wantto relate the bird abundance to> a number of habitat variables (here: X1-X2-X3) collected at the site level.Abundance: this is the number> of birds counted at a point. In most cases ( > 90%), no birds were detectedand the abundance dataset is thus zero-inflated.> > I have been looking for a code to analyze this zero-inflated poissondistributed dataset with a repeated> measures design, and I have arrived at the glmmADMB package. > > library(glmmADMB) > data <- read.table("D:/Boris/Borisdataset.csv",sep=",",header=TRUE) > count <- data$count > site <- data$site > abundance <- data$abundance >test<-glmm.admb(abundance~data$X1+data$X2+data$year,random=~count, group="site",data=data,family="poisson",zeroInflation=TRUE)> > [ for clarity: in the above syntax: count ranges from 1-5 as each site hasbeen counted 5 times in a year, site> refers to one of the 25 forest fragments in which the point counts wereconducted, Xi are the habitat variables].> > My questions are: > - does it make sense to analyze these data at the point level, as all habitatvariables are collected at the> site level, meaning that for all points belonging to a certain forestfragment, the habitat variables> have the same value. If it does make sense, is the proposed syntax ok? Isthere any option to include year as a> random effect, as I am not especially interested in differences between years.> -it looks appealing to average the point count values for each forestfragment, and to analyze the data with> "forest fragment" as unit of analysis. However, also when averaging acrossfragments, the dataset is> still zero-inflated. It is however impossible to a zero-inflated Poissondistribution for this> analysis, as the averaged forest fragment values are not always discretevalues. Rather than averaging, one can side-step that problem by instead summing over points within sites and using a log(time) offset for any fixed differences in time of observation across sites. It sounds sensible to me to take the approach of a site-level analysis, but my credentials are not in statistics so it's possible that a more authoritative answer would be offered. -- David Winsemius
ONKELINX, Thierry
2009-Apr-14 13:46 UTC
[R] Question on zero-inflated Poisson count data with repeatedmeasures design - glmm.ADMB
Dear Diederik, If you revisited the same points then it makes sense to use the data at the point level. But then I would mke that explicit by using a nested random effect. In the nlme/lme4 syntax: 1|Site/Point. Make shure that each point has a unique ID. Naming a variable "count" is not a very good idea unless it is something you counted. I would suggest to rename it to "visit". That would cause less confugion. It looks to me like you have in your model a crossed random effect: Visit and Site. Was that intended? Furthermore you assume that the first visit in year 1 has the same effect as the first visit in year 2 and 3. And the same goes for the other visits. Is that a valid assumption for your data? Including year as a random effect is not a good idea since is has only three levels. Douglas Bates recommends at least six levels for a random effect. Otherwise you don't get a good estimate of its variance. You could number the visits from 1 to 15 instead of restarting from 1 each year. Then you make less assumitions about your model. As this random effect would incorporate the effects of year, visit and their interaction. HTH, Thierry PS R-Sig-mixed models is a mailing list dedicated to mixed models. That is more appropriate for this kind of questions. ------------------------------------------------------------------------ ---- ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest Cel biometrie, methodologie en kwaliteitszorg / Section biometrics, methodology and quality assurance Gaverstraat 4 9500 Geraardsbergen Belgium tel. + 32 54/436 185 Thierry.Onkelinx at inbo.be www.inbo.be To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey -----Oorspronkelijk bericht----- Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] Namens Strubbe Diederik Verzonden: maandag 13 april 2009 22:35 Aan: r-help at r-project.org Onderwerp: [R] Question on zero-inflated Poisson count data with repeatedmeasures design - glmm.ADMB Dear R community, I have some questions regarding the analysis of a zero-inflated count dataset and repeated measures design. The dataset is arranged as follows : Unit of analysis: point - these are points were bird were counted during a certain amount of time. In total we have about 175 points. Each point is located within a certain habitat fragment (here: "site"= A-B-C-D-..., in reality we have 25 sites,i.e. forest fragments). All points were counted five times during three years ( thus in total, each point was counted 15 times). We want to relate the bird abundance to a number of habitat variables (here: X1-X2-X3) collected at the site level. Abundance: this is the number of birds counted at a point. In most cases ( > 90%), no birds were detected and the abundance dataset is thus zero-inflated. I have been looking for a code to analyze this zero-inflated poisson distributed dataset with a repeated measures design, and I have arrived at the glmmADMB package. library(glmmADMB) data <- read.table("D:/Boris/Borisdataset.csv",sep=",",header=TRUE) count <- data$count site <- data$site abundance <- data$abundance test<-glmm.admb(abundance~data$X1+data$X2+data$year,random=~count,group"site",data=data,family="poisson",zeroInflation=TRUE) [ for clarity: in the above syntax: count ranges from 1-5 as each site has been counted 5 times in a year, site refers to one of the 25 forest fragments in which the point counts were conducted, Xi are the habitat variables]. My questions are: - does it make sense to analyze these data at the point level, as all habitat variables are collected at the site level, meaning that for all points belonging to a certain forest fragment, the habitat variables have the same value. If it does make sense, is the proposed syntax ok? Is there any option to include year as a random effect, as I am not especially interested in differences between years. -it looks appealing to average the point count values for each forest fragment, and to analyze the data with "forest fragment" as unit of analysis. However, also when averaging across fragments, the dataset is still zero-inflated. It is however impossible to a zero-inflated Poisson distribution for this analysis, as the averaged forest fragment values are not always discrete values. Many thanks in advance, Diederik {example of dataset reproduced below....} X1 X2 X3 point site count year abundance 1.23598 0.277765 0.861794 1 A 1 2001 0 1.23598 0.277765 0.861794 1 A 2 2001 0 1.23598 0.277765 0.861794 1 A 3 2001 6 1.23598 0.277765 0.861794 1 A 4 2001 10 1.23598 0.277765 0.861794 1 A 5 2001 0 1.23598 0.277765 0.861794 2 A 1 2001 0 1.23598 0.277765 0.861794 2 A 2 2001 0 1.23598 0.277765 0.861794 2 A 3 2001 0 1.23598 0.277765 0.861794 2 A 4 2001 0 1.23598 0.277765 0.861794 2 A 5 2001 0 1.23598 0.277765 0.861794 3 A 1 2001 9 1.23598 0.277765 0.861794 3 A 2 2001 3 1.23598 0.277765 0.861794 3 A 3 2001 5 1.23598 0.277765 0.861794 3 A 4 2001 0 1.23598 0.277765 0.861794 3 A 5 2001 0 1.23598 0.277765 0.861794 1 A 1 2002 9 1.23598 0.277765 0.861794 1 A 2 2002 0 1.23598 0.277765 0.861794 1 A 3 2002 0 1.23598 0.277765 0.861794 1 A 4 2002 0 1.23598 0.277765 0.861794 1 A 5 2002 0 1.23598 0.277765 0.861794 2 A 1 2002 0 1.23598 0.277765 0.861794 2 A 2 2002 0 1.23598 0.277765 0.861794 2 A 3 2002 0 1.23598 0.277765 0.861794 2 A 4 2002 0 1.23598 0.277765 0.861794 2 A 5 2002 0 1.23598 0.277765 0.861794 3 A 1 2002 0 1.23598 0.277765 0.861794 3 A 2 2002 0 1.23598 0.277765 0.861794 3 A 3 2002 0 1.23598 0.277765 0.861794 3 A 4 2002 0 1.23598 0.277765 0.861794 3 A 5 2002 0 1.23598 0.277765 0.861794 1 A 1 2003 5 1.23598 0.277765 0.861794 1 A 2 2003 5 1.23598 0.277765 0.861794 1 A 3 2003 0 1.23598 0.277765 0.861794 1 A 4 2003 0 1.23598 0.277765 0.861794 1 A 5 2003 0 1.23598 0.277765 0.861794 2 A 1 2003 0 1.23598 0.277765 0.861794 2 A 2 2003 0 1.23598 0.277765 0.861794 2 A 3 2003 0 1.23598 0.277765 0.861794 2 A 4 2003 6 1.23598 0.277765 0.861794 2 A 5 2003 4 1.23598 0.277765 0.861794 3 A 1 2003 0 1.23598 0.277765 0.861794 3 A 2 2003 0 1.23598 0.277765 0.861794 3 A 3 2003 9 1.23598 0.277765 0.861794 3 A 4 2003 0 1.23598 0.277765 0.861794 3 A 5 2003 0 0.47955 0.403671 0.980391 1 B 1 2001 0 0.47955 0.403671 0.980391 1 B 2 2001 0 0.47955 0.403671 0.980391 1 B 3 2001 0 0.47955 0.403671 0.980391 1 B 4 2001 0 0.47955 0.403671 0.980391 1 B 5 2001 9 0.47955 0.403671 0.980391 2 B 1 2001 1 0.47955 0.403671 0.980391 2 B 2 2001 9 0.47955 0.403671 0.980391 2 B 3 2001 0 0.47955 0.403671 0.980391 2 B 4 2001 0 0.47955 0.403671 0.980391 2 B 5 2001 0 0.47955 0.403671 0.980391 3 B 1 2001 0 0.47955 0.403671 0.980391 3 B 2 2001 0 0.47955 0.403671 0.980391 3 B 3 2001 0 0.47955 0.403671 0.980391 3 B 4 2001 7 0.47955 0.403671 0.980391 3 B 5 2001 0 0.47955 0.403671 0.980391 1 B 1 2002 0 0.47955 0.403671 0.980391 1 B 2 2002 0 0.47955 0.403671 0.980391 1 B 3 2002 0 0.47955 0.403671 0.980391 1 B 4 2002 1 0.47955 0.403671 0.980391 1 B 5 2002 0 0.47955 0.403671 0.980391 2 B 1 2002 0 0.47955 0.403671 0.980391 2 B 2 2002 0 0.47955 0.403671 0.980391 2 B 3 2002 0 0.47955 0.403671 0.980391 2 B 4 2002 6 0.47955 0.403671 0.980391 2 B 5 2002 0 0.47955 0.403671 0.980391 3 B 1 2002 0 0.47955 0.403671 0.980391 3 B 2 2002 5 0.47955 0.403671 0.980391 3 B 3 2002 0 0.47955 0.403671 0.980391 3 B 4 2002 2 0.47955 0.403671 0.980391 3 B 5 2002 0 0.47955 0.403671 0.980391 1 B 1 2003 0 0.47955 0.403671 0.980391 1 B 2 2003 0 0.47955 0.403671 0.980391 1 B 3 2003 0 0.47955 0.403671 0.980391 1 B 4 2003 0 0.47955 0.403671 0.980391 1 B 5 2003 0 0.47955 0.403671 0.980391 2 B 1 2003 0 0.47955 0.403671 0.980391 2 B 2 2003 0 0.47955 0.403671 0.980391 2 B 3 2003 0 0.47955 0.403671 0.980391 2 B 4 2003 0 0.47955 0.403671 0.980391 2 B 5 2003 0 0.47955 0.403671 0.980391 3 B 1 2003 0 0.47955 0.403671 0.980391 3 B 2 2003 0 0.47955 0.403671 0.980391 3 B 3 2003 0 0.47955 0.403671 0.980391 3 B 4 2003 0 0.47955 0.403671 0.980391 3 B 5 2003 0 0.036829 0.49832 0.906583 1 C 1 2001 0 0.036829 0.49832 0.906583 1 C 2 2001 0 0.036829 0.49832 0.906583 1 C 3 2001 0 0.036829 0.49832 0.906583 1 C 4 2001 9 0.036829 0.49832 0.906583 1 C 5 2001 0 0.036829 0.49832 0.906583 2 C 1 2001 0 0.036829 0.49832 0.906583 2 C 2 2001 0 0.036829 0.49832 0.906583 2 C 3 2001 0 0.036829 0.49832 0.906583 2 C 4 2001 0 0.036829 0.49832 0.906583 2 C 5 2001 6 0.036829 0.49832 0.906583 3 C 1 2001 0 0.036829 0.49832 0.906583 3 C 2 2001 0 0.036829 0.49832 0.906583 3 C 3 2001 0 0.036829 0.49832 0.906583 3 C 4 2001 0 0.036829 0.49832 0.906583 3 C 5 2001 8 0.036829 0.49832 0.906583 1 C 1 2002 0 0.036829 0.49832 0.906583 1 C 2 2002 0 0.036829 0.49832 0.906583 1 C 3 2002 7 0.036829 0.49832 0.906583 1 C 4 2002 0 0.036829 0.49832 0.906583 1 C 5 2002 0 0.036829 0.49832 0.906583 2 C 1 2002 0 0.036829 0.49832 0.906583 2 C 2 2002 3 0.036829 0.49832 0.906583 2 C 3 2002 0 0.036829 0.49832 0.906583 2 C 4 2002 0 0.036829 0.49832 0.906583 2 C 5 2002 0 0.036829 0.49832 0.906583 3 C 1 2002 0 0.036829 0.49832 0.906583 3 C 2 2002 0 0.036829 0.49832 0.906583 3 C 3 2002 0 0.036829 0.49832 0.906583 3 C 4 2002 0 0.036829 0.49832 0.906583 3 C 5 2002 0 0.036829 0.49832 0.906583 1 C 1 2003 0 0.036829 0.49832 0.906583 1 C 2 2003 0 0.036829 0.49832 0.906583 1 C 3 2003 6 0.036829 0.49832 0.906583 1 C 4 2003 0 0.036829 0.49832 0.906583 1 C 5 2003 0 0.036829 0.49832 0.906583 2 C 1 2003 7 0.036829 0.49832 0.906583 2 C 2 2003 0 0.036829 0.49832 0.906583 2 C 3 2003 2 0.036829 0.49832 0.906583 2 C 4 2003 9 0.036829 0.49832 0.906583 2 C 5 2003 0 0.036829 0.49832 0.906583 3 C 1 2003 0 0.036829 0.49832 0.906583 3 C 2 2003 0 0.036829 0.49832 0.906583 3 C 3 2003 0 0.036829 0.49832 0.906583 3 C 4 2003 0 0.036829 0.49832 0.906583 3 C 5 2003 0 1.23598 0.129 1.30048 1 D 1 2001 0 1.23598 0.129 1.30048 1 D 2 2001 0 1.23598 0.129 1.30048 1 D 3 2001 6 1.23598 0.129 1.30048 1 D 4 2001 10 1.23598 0.129 1.30048 1 D 5 2001 0 1.23598 0.129 1.30048 2 D 1 2001 0 1.23598 0.129 1.30048 2 D 2 2001 0 1.23598 0.129 1.30048 2 D 3 2001 0 1.23598 0.129 1.30048 2 D 4 2001 12 1.23598 0.129 1.30048 2 D 5 2001 0 1.23598 0.129 1.30048 3 D 1 2001 9 1.23598 0.129 1.30048 3 D 2 2001 3 1.23598 0.129 1.30048 3 D 3 2001 5 1.23598 0.129 1.30048 3 D 4 2001 1 1.23598 0.129 1.30048 3 D 5 2001 0 1.23598 0.129 1.30048 1 D 1 2002 9 1.23598 0.129 1.30048 1 D 2 2002 2 1.23598 0.129 1.30048 1 D 3 2002 0 1.23598 0.129 1.30048 1 D 4 2002 3 1.23598 0.129 1.30048 1 D 5 2002 0 1.23598 0.129 1.30048 2 D 1 2002 0 1.23598 0.129 1.30048 2 D 2 2002 0 1.23598 0.129 1.30048 2 D 3 2002 0 1.23598 0.129 1.30048 2 D 4 2002 0 1.23598 0.129 1.30048 2 D 5 2002 0 1.23598 0.129 1.30048 3 D 1 2002 0 1.23598 0.129 1.30048 3 D 2 2002 0 1.23598 0.129 1.30048 3 D 3 2002 0 1.23598 0.129 1.30048 3 D 4 2002 0 1.23598 0.129 1.30048 3 D 5 2002 0 1.23598 0.129 1.30048 1 D 1 2003 5 1.23598 0.129 1.30048 1 D 2 2003 5 1.23598 0.129 1.30048 1 D 3 2003 0 1.23598 0.129 1.30048 1 D 4 2003 0 1.23598 0.129 1.30048 1 D 5 2003 0 1.23598 0.129 1.30048 2 D 1 2003 0 1.23598 0.129 1.30048 2 D 2 2003 0 1.23598 0.129 1.30048 2 D 3 2003 0 1.23598 0.129 1.30048 2 D 4 2003 6 1.23598 0.129 1.30048 2 D 5 2003 4 1.23598 0.129 1.30048 3 D 1 2003 0 0.418671 0.087187 0.504914 1 E 1 2001 0 0.418671 0.087187 0.504914 1 E 2 2001 0 0.418671 0.087187 0.504914 1 E 3 2001 6 0.418671 0.087187 0.504914 1 E 4 2001 10 0.418671 0.087187 0.504914 1 E 5 2001 0 0.418671 0.087187 0.504914 2 E 1 2001 0 0.418671 0.087187 0.504914 2 E 2 2001 0 0.418671 0.087187 0.504914 2 E 3 2001 0 0.418671 0.087187 0.504914 2 E 4 2001 0 0.418671 0.087187 0.504914 2 E 5 2001 0 0.418671 0.087187 0.504914 3 E 1 2001 9 0.418671 0.087187 0.504914 3 E 2 2001 3 0.418671 0.087187 0.504914 3 E 3 2001 5 0.418671 0.087187 0.504914 3 E 4 2001 0 0.418671 0.087187 0.504914 3 E 5 2001 0 0.418671 0.087187 0.504914 1 E 1 2002 9 0.418671 0.087187 0.504914 1 E 2 2002 0 0.418671 0.087187 0.504914 1 E 3 2002 0 0.418671 0.087187 0.504914 1 E 4 2002 0 0.418671 0.087187 0.504914 1 E 5 2002 0 0.418671 0.087187 0.504914 2 E 1 2002 0 0.418671 0.087187 0.504914 2 E 2 2002 0 0.418671 0.087187 0.504914 2 E 3 2002 0 0.418671 0.087187 0.504914 2 E 4 2002 0 0.418671 0.087187 0.504914 2 E 5 2002 0 0.418671 0.087187 0.504914 3 E 1 2002 0 0.418671 0.087187 0.504914 3 E 2 2002 0 0.418671 0.087187 0.504914 3 E 3 2002 0 0.418671 0.087187 0.504914 3 E 4 2002 0 0.418671 0.087187 0.504914 3 E 5 2002 0 0.418671 0.087187 0.504914 1 E 1 2003 5 0.418671 0.087187 0.504914 1 E 2 2003 5 0.418671 0.087187 0.504914 1 E 3 2003 0 0.418671 0.087187 0.504914 1 E 4 2003 0 0.418671 0.087187 0.504914 1 E 5 2003 0 0.418671 0.087187 0.504914 2 E 1 2003 0 0.418671 0.087187 0.504914 2 E 2 2003 0 0.418671 0.087187 0.504914 2 E 3 2003 0 0.418671 0.087187 0.504914 2 E 4 2003 6 0.418671 0.087187 0.504914 2 E 5 2003 4 0.418671 0.087187 0.504914 3 E 1 2003 0 0.418671 0.087187 0.504914 3 E 2 2003 0 0.418671 0.087187 0.504914 3 E 3 2003 9 0.418671 0.087187 0.504914 3 E 4 2003 0 0.418671 0.087187 0.504914 3 E 5 2003 0 Diederik Strubbe Evolutionary Ecology Group Department of Biology, University of Antwerp Universiteitsplein 1 B-2610 Antwerp, Belgium http://webhost.ua.ac.be/deco tel : 32 3 820 23 85 [[alternative HTML version deleted]] ______________________________________________ R-help at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document. The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.