Hello! The following code is an implementation of a Poisson regression. It generates some data-samples and computes the beta values with the negative log likelihood function. Now, my task is to compute the asymptotic convergence intervalls for the values of beta but I dont know how to implement this function - this topic is not in my lecture notes. I hope someone can help me. > library(Bhat) > # generate new data > dose <- c(rep(0,50), rep(1,50), rep(5,50), rep(10,50)) > data <- cbind(dose, rpois(200,2*(1+(10-dose) *.5*(1-(10-dose)*0.05)))) > data > lambda <- function(dose) > { > 2*(1+(10 - dose) * .5 * (1-(10-dose)*0.05)) > } > plot(c(0:10),lambda(c(0:10))) > # estimated count of fits - dose 0:10 > plot (data[,1] + rnorm(200, mean=0, sd=0.15), data[,2]) > # Likelihood - function > negloglike <- function(beta) > { > ds <- data[,1] > x <- data[,2] > lambda <- beta[1] * (1 + ( 10 - ds ) * beta[2] * (1 - (10 - ds) * beta[3])) > return(sum(lambda - x * log(lambda))) > } > beta <- list(label = c("beta1","beta2","beta3"), est=c(2.5,0.5,0.1), low=c(1,0,0),upp=c(3,2,2)) > result <- dfp(beta,f=negloglike) > result Kind regards -- View this message in context: http://www.nabble.com/asymptotic-convergence-intervall-for-poisson-regression-tp22944357p22944357.html Sent from the R help mailing list archive at Nabble.com.