Hi, I have been using this site ( http://www.stat.pitt.edu/stoffer/tsa2/Rissues.htm) to help me with some ARIMA modelling in R. Unfortunately the methods mentioned do not appear to work with second order differencing; arima(*, 2, *). I have used some dummy data to illustrate my point. When I use the xreg=... method, the estimate of intercept is *way* off. This can be seen by the high s.e but I *have* checked it in SPSS. This in turn gives the wrong t and p values (using the data that I'm actually working with; these are NaNs). Despite this problem, the forecast is correct and follows the trend. dat<-c(4,5,9,7,10,15,12,13,17,25,20,29,26,31,32) ts.dat=ts(dat, start=c(1978, 2), frequency=4) ts.plot(ts.dat) arima.dat<-arima(ts.dat,order=c(1,2,0),xreg=1:length(dat)) arima.dat tvalue<-(arima.dat$coef)/(diag(sqrt(arima.dat$var.coef))) tvalue deg.free<-length(dat)-length(arima.dat$coef) pvalue<-round(2*pt(-abs(tvalue),deg.free),digits=4) pvalue fore.arima.dat<-predict(arima.dat, 20, newxreg=(length(ts.dat)+1):(length(ts.dat)+20)) ts.plot(ts.dat, fore.arima.dat$pred) Using the diff(diff(...)) method produces the correct t and p values but the forecast looks terrible: dat<-c(4,5,9,7,10,15,12,13,17,25,20,29,26,31,32) ts.dat=ts(dat) ts.plot(ts.dat) diff.ts.dat<-diff(ts.dat) diff.ts.dat<-diff(diff.ts.dat) arima.dat<-arima(diff.ts.dat,order=c(1,0,0)) arima.dat tvalue<-(arima.dat$coef)/(diag(sqrt(arima.dat$var.coef))) tvalue deg.free<-length(dat)-length(arima.dat$coef) pvalue<-round(2*pt(-abs(tvalue),deg.free),digits=4) pvalue fore.arima.dat<-predict(arima.dat, 20) ts.plot(ts.dat, fore.arima.dat$pred) Can anybody suggest a solution (i.e. a fix that means that only one method is used)? Thanks. W. [[alternative HTML version deleted]]