Hi listers, I would like to do a graphic of the power function of the Hotteling test (T2). T2~F(p,n-p;lambda), lambda is my paremeter of non-centrality. So I would like to do a graphic of the power of the test as a function of the parameter lambda. I also would like to define lambda varying between 0.05 and 1. I am really not sure if the way that I am doing the graphic is the best methodology. I am working on this code... N<-20 p<-3 alpha<-0.05 mean0<-matrix(c(0,0,0),nrow=3,ncol=1,byrow=TRUE) mean1<-matrix(c(0,1,0),nrow=3,ncol=1,byrow=TRUE) sigma<-matrix(c(1,0.2,-0.8,0.2,1,0.4,-0.8,0.4,1),nrow=3,ncol=3,byrow=TRUE) T2<-N*(t((mean1-mean0))%*%solve(sigma)%*%(mean1-mean0)) lambda<-N*(t((mean1-mean0))%*%solve(sigma)%*%(mean1-mean0))/2 critique<-qf(1-alpha,3,17) #critique ~ Fp,n-p(?) beta<-1-pf(critique,p,n-p,ncp=lambda) beta beta1<-c(rep(0,112)) lambda1<-c(1:112) for (i in 1:112){ beta1[i]<-1-pf(critique,p,N-p,ncp=lambda1[i]) } if (0.05<beta1<1){ plot(beta1,pch=".") } Thanks, Marcio -- View this message in context: http://www.nabble.com/Hotteling-Test-tp22682412p22682412.html Sent from the R help mailing list archive at Nabble.com.