Hi All, I'm generating 10 different data sets with 1 and 0 in a matrix form and writing the output in separate files. Now I need to stack all these data sets in one vector and I know that stack only operates on list or data frame however I got these data sets by converting list to a matrix so can't go backwards now. Is there a way i can still use Stack? Please see the program: #Importing psych & ltm library for all the simulation related functions library(ltm) library(psych) # Settting the working directory path to C:/NCME path="C:/NCME" setwd(path) #IRT Data Simulation Routine# n.exams = 500 #Sets number of examinees to be generated# n.items = 20 #Sets number of items to be generated# #The following intialize empty (NA) vectors or matrices# beta.values = rep(NA,n.items) resp.prob=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items) Observed_Scores=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items) str(Observed_Scores) for (k in 1:10) { #Setting the starting point for seed set.seed(k) #filling item parameters into beta.values beta.values = runif(n.items,-2,2) #Calculating Threshold thresh.values = .5 * beta.values #Using the function to generate the Parallel Model CTT data GenData <- congeneric.sim(N=500, loads = rep(.5,20), err=NULL, short = FALSE) #Storing Observed Score in a variable Observed_Scores = GenData[[3]] #Exporting Observed scores to output file ObservedScores_Data <- paste("Observed_Scores_",k,".dat") write.table(Observed_Scores,ObservedScores_Data,row.name=FALSE,col.name=FALSE) Zero = 0 One = 1 for (t in 1:20) { for (s in 1:500) { if (Observed_Scores[s,t]<= thresh.values[t]) resp.prob[s,t] = Zero else resp.prob[s,t] = One } } ResponseData <- paste("ResponseMatrix_",k,".dat") ThreshData <- paste("Threshold_",k,".dat") write.table(resp.prob,ResponseData,row.name=FALSE,col.name=FALSE) write.table(thresh.values,ThreshData,row.name=FALSE,col.name=FALSE) #####STACKING ALL THE OUTPUTS######### CommonFile <- stack(resp.prob) ###################################### #Rounding upto 2 decimal places while showing the correlation matrix round(cor(GenData$observed),2) #Factor Score FactorScore=factor.pa(GenData$observed,1,scores = "TRUE") round(cor(FactorScore$scores,GenData$latent),2) filename_fs <- paste("FactorScore_",k,".dat") #Exporting Factor Scores to Output file write.table(FactorScore$scores,filename_fs,col.name=FALSE, row.name=FALSE) }