Anamika Chaudhuri
2008-Dec-16 17:40 UTC
[R] Beta Conjugate Prior for Random intercept model -WInBUGS
I have been using the following random intercept model with non-informative prior: model { for (i in 1:n.samples) { vomit[i] ~ dbern(p[i]) logit(p[i]) <- beta0 + alpha[siteid[i]] } for (j in 1:n.sites) { alpha[j]~dnorm(0,tau) } beta0 ~ dnorm(0.0,1.0E-6) tau ~ dgamma(0.01,0.01) } list(n.samples=3780,n.sites=63) How could I use a beta conjugate prior for the same model so that p(i) ~ dbeta(alpha,beta)? Thanks for your help.> ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]