Possible, yes (see fortune('Yoda')), but doing it can be a bit
difficult.
Here is one approximation using an independent normal kernel in 2 dimensions:
kde.contour <- function(x,y=NULL, conf=0.95, xdiv=100, ydiv=100, kernel.sd )
{
xy <- xy.coords(x,y)
xr <- range(xy$x)
yr <- range(xy$y)
xr <- xr + c(-1,1)*0.1*diff(xr)
yr <- yr + c(-1,1)*0.1*diff(yr)
if(missing(kernel.sd)) {
kernel.sd <- c( diff(xr)/6, diff(yr)/6 )
} else if (length(kernel.sd)==1) {
kernel.sd <- rep(kernel.sd, 2)
}
xs <- seq(xr[1], xr[2], length.out=xdiv)
ys <- seq(yr[1], yr[2], length.out=ydiv)
mydf <- expand.grid( xx=xs, yy=ys )
tmpfun <- function(xx,yy) {
sum( dnorm(xx, xy$x, kernel.sd[1]) * dnorm(yy, xy$y,
kernel.sd[2]) )
}
z <- mapply(tmpfun, xx=mydf$xx, yy=mydf$yy)
sz <- sort(z, decreasing=TRUE)
cz <- cumsum(sz)
cz <- cz/cz[length(cz)]
cutoff <- sz[ which( cz > conf )[1] ]
plot(xy, xlab='x', ylab='y', xlim=xr, ylim=yr)
#contour( xs, ys, matrix(z, nrow=xdiv), add=TRUE, col='blue')
contour( xs, ys, matrix(z, nrow=xdiv), add=TRUE, col='red',
levels=cutoff, labels='')
invisible(NULL)
}
# test
kde.contour( rnorm(100), rnorm(100) )
# correlated data
my.xy <- MASS::mvrnorm(100, c(3,10), matrix( c(1,.8,.8,1), 2) )
kde.contour( my.xy, kernel.sd=.5 )
# compare to theoritical
lines(ellipse::ellipse( 0.8, scale=c(1,1), centre=c(3,10)), col='green')
# bimodal
new.xy <- rbind( MASS::mvrnorm(65, c(3,10), matrix( c(1,.6,.6,1),2) ),
MASS::mvrnorm(35, c(6, 7), matrix( c(1,.6,.6,1), 2) ) )
kde.contour( new.xy, kernel.sd=.75 )
For more than 2 dimensions it becomes more difficult (both to visualize and to
find the region, contour only works in 2 dimensions). You can also see that the
approximations are not great compared to the true theory, but possibly a better
kernel would improve that.
Hope this helps,
--
Gregory (Greg) L. Snow Ph.D.
Statistical Data Center
Intermountain Healthcare
greg.snow at imail.org
801.408.8111
> -----Original Message-----
> From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-
> project.org] On Behalf Of Jeroen Ooms
> Sent: Monday, December 08, 2008 5:54 AM
> To: r-help at r-project.org
> Subject: [R] Multivariate kernel density estimation
>
>
> I would like to estimate a 95% highest density area for a multivariate
> parameter space (In the context of anova). Unfortunately I have only
> experience with univariate kernel density estimation, which is
> remarkebly
> easier :)
>
> Using Gibbs, i have sampled from a posterior distirbution of an Anova
> model
> with k means (mu) and 1 common residual variance (s2). The means are
> independent of eachother, but conditional on the residual variance. So
> now I
> have a data frame of say 10.000 iterations, and k+1 parameters.
>
> I am especially interested in the posterior distribution of the mu
> parameters, because I want to test the support for an inequalty
> constrained
> model (e.g. mu1 > mu2 > mu3). I wish to derive the multivariate 95%
> highest
> density parameter space for the mu parameters. For example, if I had a
> posterior distirbution with 2 means, this should somehow result in the
> circle or elipse that contains the 95% highest density area.
>
> Is something like this possible in R? All tips are welcome.
> --
> View this message in context: http://www.nabble.com/Multivariate-
> kernel-density-estimation-tp20894766p20894766.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-
> guide.html
> and provide commented, minimal, self-contained, reproducible code.